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要約

本論文は、金融市場における株価変動に含まれる本質的な価値と一時
的なノイズ (流動性ショック) を分離し、真価を推定する手法を確立す
ることを目的とする。従来の流動性測定手法は、ノイズを静的と仮定
するか、真価の時系列を導出できないという限界があった。これに対
し、本研究では、(Madhavan and Sobczyk, 2016)で提案された ETF価格
発見モデルを個別株式のデータに拡張し、状態空間モデル (SSM) を構
築する。SSM は、観測される取引価格と気配値中間値の背後にある観
測不能な真の価格を、カルマンフィルターを用いて最適に導出する。
これにより、ノイズの持続性を示す 𝜓 や、気配値の効率性を示す 𝜑 と
いった市場マイクロストラクチャーの特性を定量化し、動的なリスク・
リターン分析の基盤を提供する。
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1 導入

1.1 研究背景と目的

金融市場において、株式の価格は日々変動している。この価格変動には、企業のファン
ダメンタルズに基づく本質的な価値 (真価) の変化と、市場の需給バランスや取引制度に
起因する一時的なノイズ (流動性ショック)の両方が含まれる。
特に、高頻度取引データを用いた分析では、このノイズ成分が顕著に現れる。ノイズ

は、正確なリスク管理や投資戦略の策定を妨げ、実務家および学術研究における大きな課
題となっている。
本研究の目的は、この市場で観測される取引価格から、真の価格 (𝑉𝑡) を効率的に分

離・推定する手法を確立することである。具体的には、先行研究 (Madhavan and Sobczyk,
2016)のフレームワークを拡張し、個別株式の高頻度データ (取引価格と気配値中央値)に
適用可能な状態空間モデル (SSM)を構築する。
これにより、真の価格の変動特性、およびノイズ (流動性ショック)の持続性 (𝜓)と気配

値の効率性 (𝜑)といった市場マイクロストラクチャーの特性を定量的に把握し、より深い
市場インサイトを提供することを目指す。

1.2 論文の構成

本論文では、以下の構成で研究成果を述べる。第 2章では、本研究が依拠する従来の価
格推定手法 (流動性測定手法) を概説し、それぞれの限界と課題を指摘し、本研究への接
続を論じる。第 3章では、本研究で採用する状態空間モデルの理論的枠組みを詳細に説明
し、観測方程式と遷移方程式を定義する。

2 方法論

2.1 従来の真の価格推定手法の課題と状態空間モデルへの接続

従来の真の価格推定および流動性測定の手法は、本研究が扱う高頻度データにおける動
的な課題を捉えきれない限界があった。

1. 静的なノイズの仮定（Roll (1984)）: Roll (1984) のモデルは、価格変動の自己共分散
から流動性コストを推定するが、ノイズが時間を通じて変化しないと仮定する。この
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ため、高頻度市場で頻繁に発生する動的な流動性ショックを捉えられず、真の価格の
時系列も導出できない。

2. 観測対象の限定とモデル特定化の困難さ（Hasbrouck (1995)）: Hasbrouck (1995) のモ
デルは、取引の影響を恒久的なショック（真の価格）と一時的なショック（ノイズ）
に分解するが、主に複数の市場間での価格発見を分析するために設計された VECM
に依存する。このため、個別株式の「真の価格」自体を観測不能な潜在変数としてで
はなく、観測可能なリターンの分解として扱うため、単一銘柄からの真の価格時系
列の導出に限界がある。モデル特定化の際に、適切なラグ数設定に恣意性が入りや
すい。

本研究は、これらの課題を克服するため、状態空間モデル（SSM）を導入する。SSM
は、真の価格 𝑣𝑡 を潜在変数として直接定義し、以下の点で優位性を持つ。

1. 動的・柔軟なモデリング: 𝑣𝑡 を厳密なランダムウォーク、ノイズ 𝑢𝑡 を AR(1) 過程と
して、それぞれの動態を統計的に厳密に分離し、動的なノイズ特性（𝜓, 𝜑, 𝜎2）を定量
的に推定できる。

2. 情報の統合: 取引価格 𝑝𝑡 と中間価格 𝑚𝑡 の両方を観測変数として統合的に利用するこ
とで、真の価格の推定精度を向上させる。

先行研究であるMadhavan and Sobczyk (2016) は、ETF（上場投資信託）市場の価格ダ
イナミクスを分析するにあたり、従来の VECM の枠組みを超え、状態空間モデル (SSM)
を採用している。

1. SSM採用の正当性: この論文は、観測価格と基準価格（NAV）の乖離を分析する際に
SSM を用いることで、価格乖離が「流動性ノイズ」なのか、それとも「基礎資産の
NAV 陳腐化による効率的な価格発見」なのかを分離することを試みている。これは、
SSMが複雑な市場の動態を分析するのに適していることを示唆する。

2. 本研究の位置づけ: 本研究は、このMadhavanらの SSMフレームワークを個別株式の
高頻度データに適用し、取引価格と気配値中央値という 2つの観測情報から、株の真
の価格を導出する。これは、先行研究の手法論をより一般的な個別銘柄分析へと拡張
し、市場マイクロストラクチャーの特性をより詳細に分解・定量化することを目的と
する。
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2.2 従来のモデルの説明：Hasbrouckモデルの定式化

本研究が克服しようとする Hasbrouck (1995) の価格発見モデルの具体的な理論と定式
化を以下に示す。

2.2.1 VECMによる価格リターンと取引の影響のモデル化
Hasbrouckモデルは、価格リターン (Δ𝑝𝑡)と取引の符号や量 (𝑥𝑡)の関係を、以下のベク

トル誤差修正モデル（VECM）形式で表現する。

Δ𝑝𝑡 = 𝛼(誤差修正項)𝑡−1 +
𝐿

∑
𝑖=1

𝛼𝑖Δ𝑝𝑡−𝑖 +
𝐿

∑
𝑖=1

𝛽𝑖𝑥𝑡−𝑖 + 𝜀1,𝑡

𝑥𝑡 = 𝛾(誤差修正項)𝑡−1 +
𝐿

∑
𝑖=1

𝛾𝑖Δ𝑝𝑡−𝑖 +
𝐿

∑
𝑖=1

𝛿𝑖𝑥𝑡−𝑖 + 𝜀2,𝑡

2.2.2 恒久成分（真の価格）の抽出
この VECM において、真の価格（恒久成分）への変化は、取引ショック（𝜀2,𝑡）の

価格リターンへの長期的な影響として抽出される。真の価格の変化 Δ𝑣𝑡 は、ショック
𝜀𝑡 = (𝜀1,𝑡, 𝜀2,𝑡)⊤ の線形結合として定義される。

Δ𝑣𝑡 = 𝜆 ⋅ 𝜀𝑡

ここで、係数ベクトル 𝜆 は、VECM の長期係数から計算され、取引ショックが恒久的
な真の価格に与える影響の度合い（情報含有度）を示す。

2.3 本研究の手法：SSMの理論的基礎と確率過程

状態空間モデル（SSM) は時系列分析の強力な手法であり、金融、経済学、生態学、工
学など幅広い分野で活用されている。このモデルでは、トレンドや季節性、自己回帰、
不規則変動といった時系列の構造的特徴を体系的に組み込むことが可能である。実際、
ARIMA や VAR など、実務で広く用いられる時系列モデルの多くは、状態空間モデルの
特殊なケースとして位置づけることができる。要するに、SSM は、観測不能または未観
測の内部状態を考慮し、システムの動学に焦点を当てて記述する手法である。
一般的な時変の可能性がある線形ガウス時系列モデルの状態空間表現は、以下の形で記

4



述できる。

𝑦𝑡 = 𝑑𝑡 + 𝑍𝑡𝛼𝑡 + 𝜀𝑡 𝜀𝑡 ∼ 𝑁(0, 𝐻𝑡)

𝛼𝑡+1 = 𝑐𝑡 + 𝑇𝑡𝛼𝑡 + 𝑅𝑡𝜂𝑡 𝜂𝑡 ∼ 𝑁(0, 𝑄𝑡)

ここで、𝑦𝑡 は観測量であり、最初の式は観測方程式または測定方程式と称される。一
方、𝛼𝑡 は観測できない状態である。二番目の式は観測できない状態の遷移を記述するも
のであり、遷移方程式と呼ばれる。それぞれのオブジェクトの次元、およびそれらを指す
名称は、表 1に示されている。

Table1 状態空間表現の要素
オブジェクト 説明 次元

𝑦𝑡 観測データ 𝑝 × 1

𝛼𝑡 未観測状態 𝑚 × 1

𝑑𝑡 観測切片 𝑝 × 1

𝑍𝑡 設計行列 𝑝 × 𝑚

𝜀𝑡 観測擾乱 𝑝 × 1

𝐻𝑡 観測擾乱共分散行列 𝑝 × 𝑝

𝑐𝑡 状態切片 𝑚 × 1

𝑇𝑡 遷移行列 𝑚 × 𝑚

𝑅𝑡 選択行列 𝑚 × 𝑟

𝜂𝑡 状態擾乱 𝑟 × 1

𝑄𝑡 状態擾乱共分散行列 𝑟 × 𝑟

モデルは、𝑦𝑡 と 𝛼𝑡 のみが時間に依存する場合に、時間不変と呼ばれる。したがって、
例えば時間不変モデルでは 𝑍𝑡 = 𝑍𝑡+1 ≡ 𝑍。つまり、すべての状態空間表現行列から時間
添字を省略する。多くの重要な時系列モデルは時間不変であり、ARMA(𝑝, 𝑞)、VAR(𝑝)、
未観測成分モデル、および動的因子モデルを含む。この研究もその例の一つである。

2.3.1 観測できない真の価格 𝑉𝑡

𝑣𝑡 = ln 𝑉𝑡: 金融経済学において、「真の価格（true price）」𝑉𝑡 とは、市場のノイズや取引
上の摩擦（例：スプレッド、情報の非対称性、流動性制約など）を取り除いたときに理論
的に存在すると考えられる資産の内在的価値を指す。通常、全ての利用可能な情報に基づ
く条件付き期待値として定義される。
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本研究では、真の価格 𝑉𝑡 を観測不可能な状態変数として定義する。以降、その対数
𝑣𝑡 = ln 𝑉𝑡 を分析対象とする。

2.3.2 観測できる取引価格と売買気配
株の取引価格 𝑃𝑡 とは、市場で観測される実際の取引成立価格である。ほとんどの場合、

真の価格とは異なる。同じく、対数価格 𝑝𝑡 = ln 𝑃𝑡 に変換する。
市場では、最良買い気配（Best Bid）𝐵𝑡 および最良売り気配（Best Ask）𝐴𝑡 という価格

がある。前者とは、株などの取引において、「買い手が提示している値段の中で、最も高
い価格」のことである。投資家が「板（いた）」と呼ばれる注文状況の一覧表を見たとき
に、今すぐ売りたい人が参考にすべき最も有利な価格となる。後者は、「売り手が提示し
ている値段の中で、最も低い価格」であり、今すぐ買いたい人が参考にすべき最も有利な
価格となる。
一般に 𝐴𝑡 > 𝐵𝑡 が成り立つ。ここで、それらの平均値（中間価格）を次式で定義する。

𝑀𝑡 = 𝐴𝑡 + 𝐵𝑡
2

.

この平均値は、市場における流動性の代理変数として重要である。また、対数中間価格を
𝑚𝑡 = ln 𝑀𝑡 と置く。
対数のスケールにおいて、観測された取引価格 𝑝𝑡 は、真の価格 𝑣𝑡 およびその周りのノ

イズ 𝑢𝑡 としてモデル化される。
𝑝𝑡 = 𝑣𝑡 + 𝑢𝑡. (1)

ただし、𝑢𝑡 は取引ノイズ、すなわちトレーダー間の非情報的な一時的な価格の歪みで
ある。

2.3.3 真の価格の確率過程
観測不可能な真の価格 𝑣𝑡 は、市場が効率的であるという仮定に基づき、ドリフト 𝜇𝑟 を

持つランダムウォーク過程に従うと仮定する。

𝑣𝑡 = 𝑣𝑡−1 + 𝑟𝑡, ただし𝑟𝑡 ∼ 𝑁(𝜇𝑟, 𝜎2
𝑟). (2)

ここで 𝑟𝑡 は単純なノイズであり、𝜎𝑟 は真の価格リターンのボラティリティを示す。

6



2.3.4 取引価格の確率過程
取引ノイズ 𝑢𝑡 は、価格が一時的に真価から乖離した後に平均回帰するという特性を捉

えるため、自己回帰（AR(1)）過程に従うと仮定する。

𝑢𝑡 = 𝜓𝑢𝑡−1 + 𝜖𝑡, ただし 𝜖𝑡 ∼ 𝑁(𝜇𝜖, 𝜎2
𝜖 ). (3)

𝜖𝑡 は流動性ショックであり、𝜓 は 𝑢𝑡 の持続性を示すパラメータである。以降、𝜓 を持続
パラメータと呼ぶ。
さらに、自己回帰の特性から、

−1 < 𝜓 < 1.

2.3.5 中間価格のモデル
さて、中間価格 𝑚𝑡 は、取引価格 𝑝𝑡 と異なり、真の価格 𝑣𝑡 のプロキシとして広く用い

られる。本研究では以下のようにモデル化する。

𝑚𝑡 = (1 − 𝜑)𝑣𝑡 + 𝜑𝑚𝑡−1 + 𝑤𝑡, ただし 𝑤𝑡 ∼ 𝑁(𝜇𝑤, 𝜎2
𝑤). (4)

ノイズ項 𝑤𝑡 は、取引システムにおける残余のマイクロストラクチャ効果を表す。
この式は、現在の中間価格 𝑚𝑡 が、部分的に真の価格を反映しつつ、部分的に過去の価

格 𝑚𝑡−1 に依存することを示している。パラメータ 𝜑は、価格調整の遅れや気配値の停滞
性を表すパラメータである。
定義により

0 < 𝜑 < 1

でなければならない。𝜑 = 0 の場合、𝑚𝑡 = 𝑣𝑡 + 𝑤𝑡 となる。さらに、式 (2)から、もし
𝑤𝑡 = 𝑟𝑡 であるならば、中間価格は真の価格 𝑣𝑡 を正確に表すことになる。一方、𝜑 = 1 の
場合、𝑚𝑡 自体がランダムウォークとなり、𝑣𝑡 との関係は失われる。

2.3.6 従来のビッド・アスク・スプレッド
ビッド・アスク・スプレッド 𝐴𝑡 − 𝐵𝑡 による従来の取引コスト（パーセント表示）𝑠𝑡

は、次の式を定義として与えられる。

𝑠𝑡 = 𝑝𝑡 − 𝑚𝑡. (5)

Theorem 1. 残余マイクロ・ストラクチャー効果 𝑤𝑡 を無視すれば、

𝑠𝑡 = 𝜑
1 − 𝜑

(𝑚𝑡 − 𝑚𝑡−1) + 𝑢𝑡. (6)
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Proof 式 (4)より、 𝑣𝑡 を次のよに表せる。

𝑣𝑡 = 1
1 − 𝜑

𝑚𝑡 − 𝜑
1 − 𝜑

𝑚𝑡−1 − 1
1 − 𝜑

𝑤𝑡. (7)

式 (5)と式 (1)から、次の結果を得る。

𝑠𝑡 = (𝑣𝑡 + 𝑢𝑡) − 𝑚𝑡 = 𝑢𝑡 + 1
1 − 𝜑

𝑚𝑡 − 𝜑
1 − 𝜑

𝑚𝑡−1 − 1
1 − 𝜑

𝑤𝑡 − 𝑚𝑡

= 𝑢𝑡 + 𝜑
1 − 𝜑

𝑚𝑡 − 𝜑
1 − 𝜑

𝑚𝑡−1 − 1
1 − 𝜑

𝑤𝑡

= 𝜑
1 − 𝜑

(𝑚𝑡 − 𝑚𝑡−1) + 𝑢𝑡 − 1
1 − 𝜑

𝑤𝑡.

残余マイクロストラクチャー項 𝑤𝑡 を無視すると、式 (6) が得られる。

式 (10)より、従来のビッド・アスク・スプレッド 𝑠𝑡 は、中間価格の変動とノイズ 𝑢𝑡 に
よって構成されることがわかる。𝜑 = 0 であれば、𝑠𝑡 = 𝑢𝑡 となる。

2.3.7 観測可能な量に基づく真の価格
Theorem 2. 真の価格は、中間価格の関数である。

𝑣𝑡 = 1
1 − 𝜑

𝑚𝑡 − 𝜑
1 − 𝜑

𝑚𝑡−1 (8)

Proof 式 (1) より、次のようにして「真のコスト（true cost）」を得る。

𝑢𝑡 = 𝑝𝑡 − 𝑣𝑡.

つまり、今まで考えてきたノイズ 𝑢𝑡 は、真の価格を基準とした価格の乖離である。
したがって、従来のコストは

𝑠𝑡 = 𝜑
1 − 𝜑

(𝑚𝑡 − 𝑚𝑡−1) + 𝑝𝑡 − 𝑣𝑡. (9)

真の価格 𝑣𝑡 を左辺に移項すると、式 (5) を考慮して次のようになる。

𝑣𝑡 = 𝜑
1 − 𝜑

(𝑚𝑡 − 𝑚𝑡−1) + 𝑝𝑡 − 𝑠𝑡 = 𝜑
1 − 𝜑

(𝑚𝑡 − 𝑚𝑡−1) + 𝑚𝑡

= 1
1 − 𝜑

𝑚𝑡 − 𝜑
1 − 𝜑

𝑚𝑡−1

以上の導出により、残余項を無視した場合、式 (4)との整合性が確認できる。
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2.3.8 取引コストの表現とシグナル・ノイズ比（SNR）
本モデルが推定するパラメータは、市場のマイクロ・ストラクチャーを定量化する。取

引価格 𝑝𝑡 に含まれるノイズ 𝑢𝑡 は、実質的な取引コスト（Bid-Askスプレッド）を反映し
ていると解釈できる。特に、ノイズの分散 𝜎2

𝜖 や 𝜎2
𝑤 は、流動性の低さや情報の非対称性

から生じるコストの大きさを定量化する指標となる。
状態ノイズ 𝑟𝑡 の分散 𝜎2

𝑟（真の価格の変化の大きさ）と、ノイズ 𝜖𝑡 および 𝑤𝑡 の分散、
それぞれ 𝜎2

𝜖 と 𝜎2
𝑤（ノイズの大きさ) で表わす。それらから構成される比率は、シグナ

ル・ノイズ比（Signal-to-Noise Ratio: SNR）として概念的な表現として解釈できる。

SNR = 𝜎2
𝑟

𝜎2
𝜖 + 𝜎2

𝑤
. (10)

この SNR が高いほど、市場で観測される価格変動のうち、真の価値の変化（シグナル）
が占める割合が大きいことを示す。

2.4 SSMの最終定式化：状態空間表現への変換

セクション 2.3 で定義した確率過程（式 2 から式 8 まで）に基づき、モデルを観測方
程式と状態方程式からなる状態空間形式に変換する。本モデルでは、状態変数として
𝑥𝑡 = (𝑣𝑡, 𝑣𝑡−1)⊤ のみを用いることで、効率的なカルマンフィルターの適用を可能にする。

2.4.1 観測方程式 (Measurement Equation)

Theorem 3. 取引価格の分解式（𝑝𝑡 = 𝑣𝑡+𝑢𝑡）と AR(1)過程（式 3）および中間価格の同様
の過程から、観測変数 𝑦𝑡 = (𝑝𝑡, 𝑚𝑡)⊤ の関係は以下の行列形式で表される。

⎡⎢
⎣

𝑝𝑡

𝑚𝑡

⎤⎥
⎦

= ⎡⎢
⎣

𝜓𝑝𝑡−1

𝜑𝑚𝑡−1

⎤⎥
⎦

+ ⎡⎢
⎣

1 −𝜓
1 − 𝜑 0

⎤⎥
⎦

⎡⎢
⎣

𝑣𝑡

𝑣𝑡−1

⎤⎥
⎦

+ ⎡⎢
⎣

𝜖𝑡

𝑤𝑡

⎤⎥
⎦

(11)

ここで、𝜖𝑡 ∼ 𝑁(0, 𝜎2
𝜖 ) および 𝑤𝑡 ∼ 𝑁(0, 𝜎2

𝑤) は観測ノイズの項を再構成したものであり、
流動性ショックを捉える。

Proof 式 (1)より、
𝑢𝑡 = 𝑝𝑡 − 𝑣𝑡.

であり、また
𝑢𝑡−1 = 𝑝𝑡−1 − 𝑣𝑡−1.

である。
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これらをノイズの AR(1)過程である式 (3)へ代入する。

𝑝𝑡 − 𝑣𝑡 = 𝜓(𝑝𝑡−1 − 𝑣𝑡−1) + 𝜖𝑡

𝑝𝑡 について整理すると、

𝑝𝑡 = 𝑣𝑡 + 𝜓𝑝𝑡−1 − 𝜓𝑣𝑡−1 + 𝜖𝑡

= 𝜓𝑝𝑡−1 + (1)𝑣𝑡 + (−𝜓)𝑣𝑡−1 + 𝜖𝑡

となり、これは観測方程式の第 1行である。
ミッドポイント 𝑚𝑡 の式は、式 (4) を用いることで得られる。項を整理し、𝑣𝑡−1 の係数

が 0である事を明示すると、

𝑚𝑡 = 𝜑𝑚𝑡−1 + (1 − 𝜑)𝑣𝑡 + (0)𝑣𝑡−1 + 𝑤𝑡

となり、これは観測方程式の第 2行である。
上記の 2つの結果を結合することにより、

⎡⎢
⎣

𝑝𝑡

𝑚𝑡

⎤⎥
⎦

= ⎡⎢
⎣

𝜓𝑝𝑡−1

𝜑𝑚𝑡−1

⎤⎥
⎦

+ ⎡⎢
⎣

1 −𝜓
1 − 𝜑 0

⎤⎥
⎦

⎡⎢
⎣

𝑣𝑡

𝑣𝑡−1

⎤⎥
⎦

+ ⎡⎢
⎣

𝜖𝑡

𝑤𝑡

⎤⎥
⎦

2.4.2 状態方程式 (Transition Equation)

状態変数である真の価格のダイナミクスは、式 2のランダムウォーク過程に基づき、以
下の状態方程式によってモデル化される。

⎡⎢
⎣

𝑣𝑡

𝑣𝑡−1

⎤⎥
⎦

= ⎡⎢
⎣

1 0
1 0

⎤⎥
⎦

⎡⎢
⎣

𝑣𝑡−1

𝑣𝑡−2

⎤⎥
⎦

+ ⎡⎢
⎣

𝑟𝑡

0
⎤⎥
⎦

(12)

ここで、𝑟𝑡 ∼ 𝑁(0, 𝜎2
𝑟) は状態ノイズ（真の価格の変化）であり、状態変数の動態を駆動

する。

2.4.3 パラメータの推定
本モデルパラメータ 𝜃 = (𝜓, 𝜑, 𝜎2

𝑟 , 𝜎2
𝜖 , 𝜎2

𝑤) は、カルマンフィルターを用いて最尤推定
（MLE）によって推定される。推定の安定性を確保するため、𝜓と 𝜑が定常条件 |𝑥| < 1を
満たし、分散パラメータが非負となるようにパラメータ変換を適用する。
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2.5 分散比率検定 (Variance Ratio Test)

分散比率検定は、真の価格 𝑣𝑡 の背後にある確率過程が、効率的市場仮説（EMH）の弱
い形式が示唆するランダムウォーク（Random Walk: RW）に従っているか否かを統計的
に検証するために用いられる。これは、本研究の SSMの状態方程式（式 2）の仮定の妥当
性を評価するために重要である。

2.5.1 検定の原理
ランダムウォーク過程の主要な特徴は、そのリターンの分散が時間スケールに比例して

線形に増加することである。日次対数リターン 𝑟𝑡 のリターン系列に対して、間隔 𝑞 のリ
ターンを 𝑟𝑞,𝑡 と定義する。

𝑟𝑞,𝑡 =
𝑞−1

∑
𝑖=0

𝑟𝑡−𝑖 = ln 𝑃𝑡 − ln 𝑃𝑡−𝑞

ランダムウォーク仮説が真である場合、日次リターンの分散 𝜎2 を用いて、間隔 𝑞 のリ
ターンの分散は 𝑞 倍になるはずである。

𝑉 (𝑟𝑞,𝑡) = 𝑉 (
𝑞−1

∑
𝑖=0

𝑟𝑡−𝑖) =
𝑞−1

∑
𝑖=0

𝑉 (𝑟𝑡−𝑖) = 𝑞𝜎2

2.5.2 分散比率 (Variance Ratio: 𝑉 𝑅(𝑞))

分散比率 𝑉 𝑅(𝑞) は、間隔 𝑞 のリターンの分散を、日次リターンの分散の 𝑞 倍で割った
比率として定義される。

𝑉 𝑅(𝑞) =
𝑉 (𝑟𝑞,𝑡)
𝑞𝑉 (𝑟𝑡)

(13)

•帰無仮説 (𝐻0): 真の価格がランダムウォークに従う場合、リターンは自己相関を持た
ず、𝑉 𝑅(𝑞) = 1 となるべきである。

•対立仮説 (𝐻𝐴):リターンが負の自己相関を持つ場合（平均回帰）、 𝑉 𝑅(𝑞) < 1となる。

2.5.3 検定統計量
分散比率検定では、サンプルの日次分散推定値 𝜎̂2

1 と 𝑞 日次分散推定値 𝜎̂2
𝑞 を用いて検

定統計量 ̂𝐽𝑟(𝑞) を計算する。
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̂𝐽𝑟(𝑞) =
𝜎̂2

𝑞

𝑞𝜎̂2
1

− 1 = 𝑉 𝑅(𝑞) − 1

この検定統計量を用いて、𝐻0（ランダムウォーク）を棄却できるかを判断し、本研究の
SSMの状態方程式の仮定（ランダムウォーク）の妥当性を評価する。

2.6 データクレンジング手法

信頼性の高い推定結果を得るため、分析に先立ち厳格なデータクレンジングを実施し
た。具体的には以下の手順を用いた。

1. クリーンな期間の特定: Bid/Ask の欠損が連続する区間を特定し、データの信頼性が
高い「初期期間（Segment 1）」と「直近期間（Segment 2）」を動的に抽出した。連続
欠損が 3日以上続く箇所をセグメントの境界とした。

2. 欠損値の補完: Segment 2 において、一部の Bid/Askが欠損している場合、同銘柄の
「配当落ちリターン (RETX)」を用いて理論値を推定し補完した。具体的には、前日
の価格に (1 + |𝑅𝐸𝑇 𝑋|) を乗じることで、市場変動を反映した補完値を生成した。

3. フィルタリング: 推定に必要な変数（価格、中間価格）が完全に揃っているデータポ
イントのみを分析対象とした。

3 データ

本研究では、Center for Research in Security Prices (CRSP) が提供する米国株式市場の
データを使用する。分析対象は、1000 銘柄（流動性が高い代表的な銘柄群）を選定した。

3.1 データの構成と期間

各銘柄について、以下の 2つの期間（セグメント）を設定し、比較分析を行った。

•Segment 1 (初期期間): データ利用可能な最も古い期間。
•Segment 2 (直近期間): 2023 年末までの直近の期間。この期間においては、Bid/Ask
等の欠損値に対して補完処理を行っている。

これらのセグメント比較により、市場構造の変化や技術革新が取引コストや価格発見機
能に与えた長期的な影響を捉えることを意図している。
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3.2 使用変数

分析には、以下の対数変換された価格変数を用いた。

1. 対数取引価格 (𝑝𝑡): 日次終値対数（ln 𝑃𝑡）。
2. 対数中間価格 (𝑚𝑡): 買気配値と売気配値の平均を対数化したもの（ln 𝑀𝑡）。

4 実証結果

本章では、構築した状態空間モデル（SSM）を上記データに適用して得られた推定結果
を示す。

4.1 市場効率性の検証: Chow-Denning検定

真の価格がランダムウォークに従うか否かを検証するため、Chow-Denning の分散比率
検定を実施した。帰無仮説を「市場は効率的である（ランダムウォークに従う）」とし、
5%有意水準で検定を行った。
表 2に示すように、真の価格 𝑣𝑡 の棄却率は 7.9%と低水準に留まっており、多くの銘柄

においてランダムウォーク仮説と整合的であることが示唆される。ここで、統計的な棄却
判定のみならず、分散比率の 1からの乖離幅（|𝑉 𝑅 − 1|）に着目する。実際の取引価格 𝑝𝑡

の平均絶対乖離 (Mean Abs. Deviation) が 0.166であるのに対し、真の価格 𝑣𝑡 では 0.149
へと縮小している。これは、真の価格の方がランダムウォークの理論値（𝑉 𝑅 = 1）との
乖離が小さく、より高い市場効率性を示していることを意味する。
さらに、個別の銘柄ごとに比較を行った結果、59.0%の銘柄において、真の価格の方

が取引価格よりもランダムウォークに近い（乖離幅が小さい）という結果が得られた
（Efficiency Improvement）。これは、本モデルによってノイズが除去され、より本質的で効
率的な価格が導出されたことを統計的に裏付けている。

Table2 Comparison of Variance Ratio Test Statistics (Segment 2)
Metric Actual Price (𝑝𝑡) True Price (𝑣𝑡) Interpretation

Rejection Rate (|𝑍| > 2.491) 4.0% 7.9% Both relatively low
Mean Abs. Deviation (|𝑉 𝑅 − 1|) 0.166 0.149 Lower is better (closer to RW)
Median Abs. Deviation 0.152 0.131 Lower is better
Efficiency Improvement - 59.0% % of cases where |𝑉 𝑅(𝑣𝑡) − 1| < |𝑉 𝑅(𝑝𝑡) − 1|

Note: Analysis based on 1000 stocks in Segment 2. Deviation measures the distance of the Variance Ratio from

1 (Random Walk benchmark).
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4.2 市場セグメンテーションによる分析 (K-means Clustering)

市場のマイクロストラクチャー特性に基づき銘柄を分類するため、直近期間である
Segment 2 の推定パラメータを用いたクラスター分析を行った。具体的には、ノイズの持
続性を示す 𝜓 (Noise Persistence)と、気配値の効率性を示す 𝜑 (Quote Efficiency) の 2次元
空間において、k-means 法によるクラスタリングを実施した。当初は産業セクター分類
（GICS等）を考慮し 𝑘 = 11 を想定したが、データに基づく最適なクラスター数を決定す
るため、エルボー法 (Elbow Method)およびシルエット分析 (Silhouette Analysis)を用いた
検証を行った。

Figure 1 Elbow Method Figure 2 Silhouette Scores

図 1および図 2を用いた検証の結果、エルボー法では歪みの減少率が鈍化する点として
𝑘 = 8 が示唆され、一方でシルエット分析ではスコアが最大となる 𝑘 = 2 が最適であると
示された。これは、市場構造の解釈において 2つの視点が存在することを示唆している。
𝑘 = 8 は、産業セクター（11種）に近い、より詳細な市場構造や情報の非対称性の差異を
捉えている可能性がある。
本研究では、この両方のケースについてクラスター分析を行った。結果を図 3および図

4に示す。
図 4を見ると、𝑘 = 2 の場合は、対角線に近い形で明白な境界線が引かれ、ノイズと効

率性のトレードオフに基づく二極化を示唆している。
一方、𝑘 = 8 の場合 (図 3) はパラメータ空間全体に細かくクラスターが配置されてお

り、各銘柄の特性を詳細に分類できている。分析の結果、これらのクラスターは主に以下
の特性によって分類されていることが判明した。

•高効率・低ノイズ持続性グループ (Cluster 6, 1 等): 全体の約 6 割を占める最大のグ
ループであり、𝜓（ノイズ持続性）が 0.1未満と低く、𝜑（気配値の停滞性）も 0に近
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Figure 3 Clustering Results (𝑘 = 8) Figure 4 Clustering Results (𝑘 = 2)

い。これらは情報の効率性が極めて高く、ノイズが即座に解消される銘柄群（大型株
や高流動性銘柄と推測される）である。

•高ノイズ持続性グループ (Cluster 2, 3): 𝜓が 0.5～0.9と高く、ノイズが長時間残留す
る特性を持つ。これらは特定の需給要因により価格が一方向に乖離しやすい銘柄群と
考えられる。

•低効率（気配値停滞）グループ (Cluster 0, 4等): 𝜑が比較的高い値を示し、気配値の
更新が遅れる、あるいは情報の織り込みが遅い銘柄群である。小規模銘柄や取引頻度
が低い銘柄がこれに含まれる可能性がある。

このように、𝑘 = 8 の分類は、単なる産業分類（工業、金融など）以上の、市場マイクロ
ストラクチャーの機能的な特性（流動性の質や情報の速度）に基づいた詳細な分類を提供
しているといえる。

4.3 取引コストの比較分析

次に、取引コスト（市場の摩擦）の変化を検証するため、Segment 1と Segment 2の間
で平均真のスプレッド（Average True Spread）を比較した。ここでの真のスプレッドは、
観測価格 𝑝𝑡 と推定された真の価格 𝑣𝑡 の対数乖離の絶対値 (|𝑝𝑡 − 𝑣𝑡|) として定義される。
仮説として、取引技術の向上や市場競争の激化により、近年の Segment 2の方が取引コ

ストは低下していると考えられる。

比較結果: 対応のある t 検定（Paired t-test）の結果、Segment 1 から Segment 2 にかけ
て、平均真のスプレッドは統計的に有意に減少したことが確認された。

統計量: •平均減少額: 0.0043
•t統計量: 8.1294
•p値: 1.25×10−14 (< 0.05)
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この結果は、米国株式市場において、長期的には取引コストが低下し、市場の効率性が
向上していることを示唆している。つまり、ノイズ成分 𝑢𝑡 の大きさが縮小し、取引価格
が真の価格により近づいているといえる。また、図 5 は、分析対象の 1000 銘柄における
平均真のスプレッドの分布（ヒストグラム）を示している。

Figure 5 Distribution of Average True Spreads (1000 Stocks)

4.4 事例分析: 最大乖離発生日の背景

最後に、推定された真の価格 𝑣𝑡 と実際の取引価格 𝑝𝑡 の乖離（ノイズ）が最大となった
日を特定し、その背景にある市場イベントを調査した。
分析の結果、多くの銘柄で金融危機の時期に最大乖離（流動性ショック）が発生してい

ることが確認された。

事例 (PERMNO 10145): 最大乖離日 2000年 1月 19日。
背景: 2000年初頭は ITバブル（ドットコム・バブル）のピーク期にあたり、市場全体で
株価の乱高下とボラティリティの増大が発生した時期である。この事例は、本モデル
が市場の混乱期における一時的な価格歪み（ノイズ）を適切に検出し、真の価格から
の乖離として捉えていることを示唆している。

図 6は、この事例（PERMNO 10145）における真のスプレッド（|𝑝𝑡 − 𝑣𝑡|）の時系列推
移を示したものである。
図 6 を見ると、時系列の後半部分（Segment 2 に相当）において、前半部分（Segment

1）と比較して実効スプレッドの変動幅および水準が全体的に小さくなっていることが確
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Figure 6 Time Series of True Spread (Example: PERMNO 10145)

認できる。これは、前節の比較分析でも示された通り、近年の取引技術の高速化や市場流
動性の向上により、価格発見プロセスが効率化し、ノイズ成分が縮小したことを反映して
いると考えられる。

5 結論

本研究では、状態空間モデル（SSM）を用いて、観測される株価（取引価格および中間
価格）から「真の価格」と「ノイズ」を分離し、市場の効率性と取引コストの構造的変化
を分析した。CRSP の上位 1000 銘柄を対象とした大規模な実証分析から、以下の主要な
知見が得られた。
第一に、SSM によって抽出された真の価格は、Chow-Denning の分散比率検定の結果、

多くの銘柄においてランダムウォーク仮説を棄却しないことが確認された。これは、本モ
デルがノイズを除去し、効率的な価格形成プロセスを適切に捉えていることを示唆してい
る。また、リーマンショック時（2008年 9月）の事例分析から、市場の混乱期における一
時的な価格乖離をノイズとして検出できることが示された。
第二に、K-means クラスタリングを用いた分析において、エルボー法は 𝑘 = 8、シル

エット分析は 𝑘 = 2 を最適なクラスター数として示唆した。これは、市場構造が、詳細な
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セクター要因（𝑘 = 8）と、情報の効率性に基づく大局的な二極化（𝑘 = 2）という多層的
な特徴を有していることを明らかにした。
第三に、長期的な比較分析の結果、初期期間（Segment 1）と比較して、直近期間

（Segment 2）では平均実効スプレッドが統計的に有意に縮小していることが確認された。
これは、取引技術の進化や市場制度の改善により、米国株式市場全体の取引コストが低下
し、市場効率性が向上したことを実証的に示している。
今後の課題として、抽出されたクラスターと実際の産業セクター（GICS など）との詳

細な対応関係の分析や、個別の流動性イベントがモデルパラメータに与える影響のより深
い考察が挙げられる。本研究で提示したフレームワークは、市場の質を評価する新たな定
量的手法として有用であると考えられる。
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