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Introduction
oeo

Learning Outcomes
Recall the concept of Riemann sum.
Define the concepts of area density and mass.
Construct through Riemann sum a double integral based on vertical slices.

Construct through Riemann sum a double integral based on horizontal slices.

o Y Y Y X

Distinguish between inside and outside integrals, and elaborate the notion of
“integrated out.”

(

Develop an intuitive understanding of Fubini’s theorem.

(

Analyze and apply the special case of double integral.
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Density, Area, and Mass
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Vertical Slices

< Subdivide R into n narrow . each of width Az = e ¢

n
<> Denote by z; = a + ¢ Az the z-coordinate of the right-hand edge of slice number ¢

Christopher Ting Practical English Il July 25, 2025 Ver 1.0 6/46



Double Integral (V)
O0®00000000

Vertical Rectangle

< Foreachi=1,2,...,n, slice number ¢ has x running from x;_; to x;. We

approximate its by the area of a rectangle.
<> We pick a number z between z;_; and x; and approximate the slice by a rectangle
whose is at y = T'(«}) and whose isaty = B(z]).

Li—1 X

¥
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Definite Integral

< Thus the of slice i is approximately [T'(z}) — B(z})] Ax.

()

< So the approximation of the area of R is
Arear Y [T(z}) — B(z})]Aw.
=1
<> By taking the as n — oo (i.e. taking the limit as the width of the rectangles goes
to zero), we convert the Riemann sum into a and at the same time

our approximation of the area becomes the exact area:

n

b
Area = lim_ > [T(2}) - B(a})] Az = / [T(z) — B(z)] da.
i=1 @
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Subdivision

<> Subdivide slice number i into m tiny rectangles, each of width Az and of height
]‘ * *
Ay = . [T(z}) — B(x})].

(2 3

<> Denote by y; = B(z}) + j Ay the y-coordinate of the top of rectangle number j.
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Approximation of Mass

0

At this point we approximate the inside each rectangle by a constant.
Foreach j =1,2,...,m, rectangle number j has y running from y;_; to y;. We pick a
number y; between y;_, and y; and approximate the density on rectangle number j
in slice number i by the constant f(z}, ;).

0

<> Thus the mass of rectangle number j in slice number i is approximately
f(x;“, y;‘) Ax Ay.
<> So the Riemann sum approximation of the mass of slice number i is

Note that the y;’s depend on i and m.
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Exact Mass

<> By taking the limit as m — oo (i.e. taking the limit as the height of the rectangles goes
to zero), we convert the Riemann sum into a definite integral:
_ T(x;)
Mass of slice i ~ Ax/ f(zf,y) dy = F(z}) Az,
B(z})

where

Christopher Ting Practical English Il July 25,2025 Ver 1.0 11/46
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First Double Integral

< Notice that, while we started with the density f(z,y) being a function of both x and y,
by taking the limit of this Riemann sum, we have “ ” the dependence
on y. As aresult, F(z) is a function of z only.

<> Finally, taking the limit as n — oo we get

Mass = lim Z Ax/ f(zf,y) dy = lim Z F(z}) Az.
i=1 i=1

<> Now we are back to our familiar 1-variable territory. The sum > F(z}) Az is a
=1

b
Riemann sum approximation to the integral / F(x) dz. So

b b [ rT(2)
Mass:/ F(x) dx:/ [/B() f(z,y) dy] dx.
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Notation for Top and Bottom

< |terated integral

//Rf(x,y) dz dyz/ab [/Bi:)f(m,y) dy] dz
:/ab/];:)f(m,y) dy de
:/ab dx/;:) dy £ (z,7).
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Double Integral (V)

Evaluation of/ / (z,y) dy dz

T'(x)
< First evaluate the inside integral/ f(z,y) dy using the inside limits of
B(z)

integration, and by treating « as a constant and using standard

techniques.
<> The result of the is a function of x only. Call it F(z).
< Then evaluate the / F(x) dx, whose is the answer to

the inside integral.
< Again, this integral is evaluated using standard single-variable integration techniques.
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Double Integral (V)

b T(x)
Evaluation of/ d:c/ dy f(z,y)
a B(x)

<> First evaluate the inside integral " dy f(x,y) using the limits of integration that
are directly beside the dy. o

< Indeed the dy is written directly beside /T(x) to make it clear that the limits of
integration B(z) and T'(x) are for the y—infe(a)ral.

< In the past you probably wrote this integral as /T(x) f(z,y) dy. The result of the
inside integral is again a function of z only. Callﬁ(?(x).

b
<> Then evaluate the outside integral dz F(z), whose is the answer to the

inside integral and whose limits of in(f[egration are directly beside the dz.
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Region R

R={(zy)|c<y<d Ly) <z <R }
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Horizontal Slice
d—c

n

+ Subdivide the interval ¢ < y < d into n narrow subintervals, each of width Ay =

+ We approximate slice number i by a thin horizontal rectangle. On this slice, the
y-coordinate runs over a very narrow range. We pick a number y;, somewhere in that
range.
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Horizontal Slice (con'tq)

+ We approximate slice i by a rectangle whose side is at z = L(y;) and whose
sideis at z = R(y}).

+ If we were computing the area of R, we would now approximate the area of slice i by
[R(z}) — L(z})] Ay, which is the area of the rectangle with width [R(z}) — L(z})] and

height Ay.
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Horizontal Rectangle

+ Subdivide slice number i into m tiny rectangles, each of height Ay and of width

1 * *
Az = m [R(yz) — L(y; )]
+ Foreach j = 1,2,...,m, rectangle number j has z running over a very narrow range.
We pick a number z; somewhere in that range.
Yy
b { * 7 ‘ x
L(y}) VAN R(y})

Tij-1 L
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Riemann Sum Approximation

+ On rectangle number j in slice number i, we approximate the density by f (=%, y;),
giving us that the mass of rectangle number j in slice number i is approximately
f(x;‘, y:) Ax Ay.

+ So the Riemann sum approximation of the mass of (horizontal) slice number i is

Mass of slice i ~ Z f(a5,y7) Az Ay.
j=1

+ By taking the limit as m — oo, we convert the Riemann sum into a

R(y7)
Mass of slice i ~ Ay/ f(z,y7) dz = F(y;) Ay.
L(y;)
R(y)
where F(y) = / f(z,y) d=.
L(y)
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Exact Mass

+ Observe that, as = has been integrated out, F(y) is a function of y only, not of = and

Y.
-+ Finally taking the limit as n — oo (i.e. taking the limit as the slice width goes to zero),
we get
M li ZA R(y;)f( ) da =1 ip( ) A
ass = lim y/ z,y;) dz = lim v ) Ay.
+ Now Z F(y) Ay is a Riemann sum approximation to the integral / y) dy. So

d d [ rR(y)
MaSS:/ F(y) dy:/ [/L()yf(m,y) dx] dy.
c c Yy
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Notation for Left and Right

+ Iterated integrals

//Rf(:v,y) dz dyz/cd [/sz)f(x,y) dac] dy
-[f
:/cd dy/:;()y) d:cf(x,y).

wy dz dy
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d  rR(y)
Evaluation of/ / f(z,y) dz dy
¢ JL(y)

R(y)
+ First evaluate the inside integral/ f(z,y) dz using the inside limits of
L(y)

integration. The result of the inside integral is a function of y only. Call it F'(y).

d
-+ Then evaluate the outside integral / F(y) dy, whose is the answer to the
C

inside integral.
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d R(y)
Evaluation of/ dy/ dz f(z,y)
c L(y)

R(y)
+ First evaluate the inside integral / dz f (=, y) using the limits of integration that
L(y)

are directly beside the dz.

+ Again, the dx is written directly beside /R(y) to make it clear that the limits of
integration L(y) and R(y) are for the m—inﬁggral.

+ In the past you probably wrote this integral as /R(y) f(z,y) dz. The result of the
inside integral is again a function of y only. Callji:t(%(y).

-+ Then evaluate the outside integral ’ dy F(y), whose is the answer to the

inside integral and whose limits of inctegration are directly beside the dy.
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Summary

alfR={(z,y)|a<z<b, B(zx) <y<T(x)} with B(x) and T(x) being continuous,
and if the mass density in R is f(x,y), then the mass of R is

b T(x) T(x) T (x)
/ / f(:cy dy d:c—// xy dydx—/ dx/ dyf:cy
a B(zx) B(x)

b IfR={(z,y) |c<y<d, Ly) <z < R(y) } with L(y) and R(y) being continuous,
and if the mass density in R is f(x,y), then the mass of R is

d R(y) d rR(y) d R(y)
/ / f(ac,y)dac dyz/ / f(:c,y)dxdyz/ dy/ d:cf(m,y).
c L(y) c JL(y) c L(y)
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Fubini’s Theorem

+ The integrals of Theorem 3.1 are often denoted

/Rf(:n,y) dz dy or /Rf(:c,y) dA

The symbol dA represents the area of an “ ” piece of R.
+ Implicit in Slide 25 is the statement that, if

{(w,y)‘aﬁxﬁb,B()<y<T } {fvy|c<y<d L()SxSR(y)}
and if f(z,y) is , then

b T(x)
// xy dydx—// my dz dy.
a JB(x)

+ This is called , hamed after the Italian mathematician Guido Fubini
(1879-1943).
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A Simple Example

I Let R be the triangular region above the z-axis, to the right of the y-axis and to the
left of the line x +y = 1.

I Find the mass of R if it has density f(z,y) = y.
Y

(0,1)

r+y=1

(1,0) /5
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Solution Using Vertical Strips

I Note that the leftmost points in R have = = 0 and the rightmost point in R has = = 1.
Y

(0,1)

(1,0) x

I For each fixed = between 0 and 1, the point (x,y) in R with the smallest y has y = 0
and the point (z,y) in R with the largest y has y =1 — .
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Solution Using Vertical Strips (conta)

I Thus
R={(z,y)0=a<2<b=1,0=B()<y<T(zx)=1-z}
I By part (a) of Theorem 3.1

b T(z) 1 1-z
MaSS—/ dm/ dy f(x,y) —/ dx/ dy y.
a B(x) 0 0

= Now the inside integral is

so that the

Christopher Ting Practical English Il July 25, 2025 Ver 1.0 29/46
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Solution Using Horizontal Strips

I Note the lowest points in R have y = 0 and the topmost pointin R has y = 1.

(1,0) T

I For each fixed y between 0 and 1, the point (z,y) in R with the smallest x has = = 0
and the point (z,y) in R with the largest z has x = 1 — y.
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Solution Using Horizontal Strips (conta)

I Thus
R={(z,y)]|0=c<y<d=1,0=L(y) <z <R(y) =1-y}.
. By part (b) of Theorem 3.1

d R(y) 1 1-y
Mass:/ dy/ dz f(z,y) :/ dy/ dx y.
c L(y) 0 0

I Now the inside integral is

1—y . )
/0 y de = [zyly Y =y — v,

since the y integral treats x as a constant, so

1 1
Y Y 1 1 1
Mass:/ dy y—y2:[—] — - -
0 [ =13 3], 2 3 6
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Arithmetic of Integration

Theorem 4.1 (Arithmetic of Integration).
Let A, B, C be real numbers. Under the hypotheses of Theorem 3.1,

@ | /R (@) + gla.v) dody = [ [ e wdzdy+ / /R g(z,y) dody
(b) // (z,9) — g(z, 1)) dxdy—//fxydmdy // (z,y) dady
(©) / /R Cfa.y) dody=C | /R f(z,y) dzdy

Christopher Ting Practical English Il July 25, 2025 Ver 1.0 32/46



Introduction Double Integral (V) Double Integral (H) Theorems of Double Integrals Examples Integration Technique Keywords
000 00000000000 00000000000 000000e000 0000000 [e]e] (o]

Arithmetic of Integration (con'td)

Theorem 4.1 ((Con’td)).

Combining these three rules we have

(@) /];(Af@aw-%Bgmaw)dwdy=u4/];f@awdxdy+13/];g@awdwdy

(e) / /R dzdy = Area(R)

m/ﬂﬂawwwz/mﬂaww@+/mﬂawmw

if the two regions R, and Ry do not intersect.
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Special Case

Theorem 4.2.

If the domain of integration

R={(z,y)la<z<b, c<y<d}

is a rectangle and the integrand is the product f(x,y) = g(z)h(y), then

[t dady - [/b dxg(cc)} [/d dyh(y)]-

Christopher Ting
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Inequalities for Integrals (1)

Under the assumptions of Theorem 3.1,
A /ff(z,y) >0 forall (z,y) in R, then

//Rﬂw,y) dedy > 0.

A /f there are constants m and M such thatm < f(x,y) < M for all (z,y) in R, then

mArea(R) < // f(z,y) dedy < M Area(R).
R

Christopher Ting Practical English Il July 25, 2025 Ver 1.0 35/46
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Inequalities for Integrals (2)

Theorem 4.3 (Con’td).
If f(x,y) < g(z,y) forall (x,y) in R, then

//Rf($,y) dxdyg//Rg(x,y) dz dy.
‘//Rf(x,y) dxdy‘ﬁ//RU(g;,y”dxdy_

El We have
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Example 1

< Evaluate //42y2 — 122 dz dy where D = {(x,y) 0<z<4,(z—22<y< 6}.

4 16
< Define I := // 42y — 12z dxdy = / / , 42y% — 12z dy d.
0 J(z—2)
D

< Hence,
4 16 4 6
I :/ / 42y — 122 dy dx :/ (14y3 — 121’9)‘@,2)2 dx
0 J(z—2)2 0

4
= / 3024 — 72z — 14(z — 2)5 + 122(z — 2) da
0
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. . 2
< Evaluate I := // 2yx? 4 9y3 dx dy where D is the region bounded by y = 3% and
D
y = 2/x.
0<z<9 0<y<6
= 2 or 1 3
§$§y§2\/5 Zyzﬁxﬁiy
9 2z 9 9 20/7
1= / 2y’ + 9y3 dy dz = / <y23:2 + y4> dz
0 J2a 0 4 2,
©
9 4 9 /16
_ /0 2 (o) + 2 (1622) - [9:3 (@) +2 (81.754)] da
9 9
8 8 24057
= / 3622 + 423 — —ztdr = 1223 + 2t — —2°| = —=—
0 9 457 |, 5
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Example 3 Question

< Whatis //3 — 6zy dx dy, where D is
f(z) = z? D I
the region shown on the left?
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Example 3 Answer

< We write //S—nydzdy://3—6xydxdy+//3—6zyd:cdy.
D D1 Do

< The two regions are

D1 )
—l<z<l 2<x<?
$2§y§17 *4§y§*$2

1 rl 2 p—z?
< Therefore, //3—6xydmdy:/ / 3—6$ydydx+/ / 3 — 6xydydx .
—1Ja2 —2J-4
D

Christopher Ting Practical English Il July 25, 2025 Ver 1.0 40/46
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Example 3 Answer (contd)

< |t follows that

1 2
1 -2
D

1 2
/3x5—3x2—3m+3dm+/ 12 + 487 — 322 — 32° dz.
-1 —2

< The answer is

1 g 3 3 9 ! 2 3 1lg ?
—x° —x° — —x° + 3x + (122 + 242° — 2° — -z
2 2 ~1 2 —2
=4+ 32
= 36 .
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Example 4

1
< Evaluate // —— dzdy where D is the region bounded by = = —y%,:z: =3
J 3 (3 4+1)

and the z-axis.

|
Nej
T
8
Il
[
<
Gl
I

|
)
=~

T

|

—27 ‘ ‘
0 1 2 3 4

Christopher Ting Practical English Il July 25, 2025 Ver 1.0 42/46



Introduction Double Integral (V) Double Integral (H) Theorems of Double Integrals Examples Integration Technique Keywords
000 00000000000 00000000000 0000000000 O00000e [e]e] (o]

Example 4 Answer

— 0<x<3 or —27T<y<0
—23 <y <0 —y%S <3
< Thus,
3 10 3 %y% 0
dwdy:// dydx:/ dz
//yé (a:3+1) 0 J—z3 y% (l‘3+1) 0 (:C3+1) 3
2
3 3(_.3)3 3 3.2
_/_2(3x) dm:—/ gx dz
o (#¥+1) o (@°+1)
31 3
2 3 3
— =1 1
f, @i ) =g
_ In(28)
B 2
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Example

_ 2
0 /1 _ z
B EvaluateI:/ (e > dz.
0 X

B Solution: Reverse the integration
y=1\ 2 o0 1 oo pl 1
da::/ (/ e Y dy> dw:/ / e_xydy/ e dzdr
0 0 o Jo 0

I /oo —eTY
y=0
/ / / *(¥+2) Qz dy dz

B ltis easy to mtegrate/ e ") dz, resulting in
0

/'°° oa) gy SOOI EEE '
0 Y+ z =0 Y+ z

Christopher Ting Practical English Il July 25, 2025 Ver 1.0  44/46
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B Therefore.

1 1 1 1 y=1 1
I—/ / dydz—/ ln(y—i-z)‘ dz—/ (In(z + 1) — Inz) dz
o Jo Ytz 0 y=0 0

B By integration by parts, we know that /lnxdaz =zlnz—a+C.

B The answer is

I=((z+Dn(z+1) - (x+1) - zlnz +%)
= 2In2.

z=1
=

=0
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