

Section 7

Double Integrals

Christopher Ting

Hiroshima University

✉: cting@hiroshima-u.ac.jp

🌐: <http://cting.x10host.com/>

☎: +81 082-424-6451

🏢: A1棟 131-1

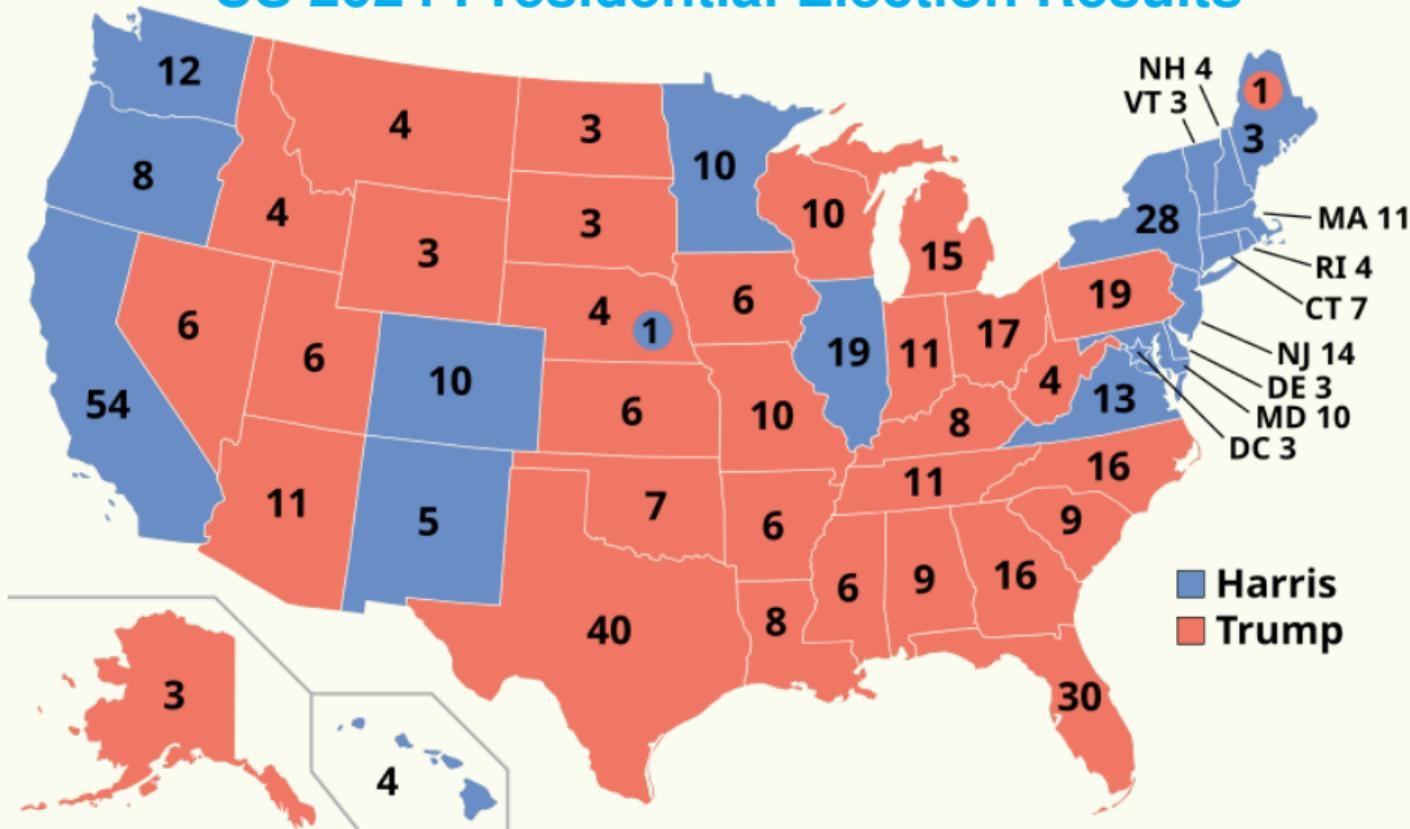
Table of Contents

- 1 Introduction**
- 2 Double Integral (V)**
- 3 Double Integral (H)**
- 4 Theorems of Double Integrals**
- 5 Examples**
- 6 Integration Technique**
- 7 Keywords**

Learning Outcomes

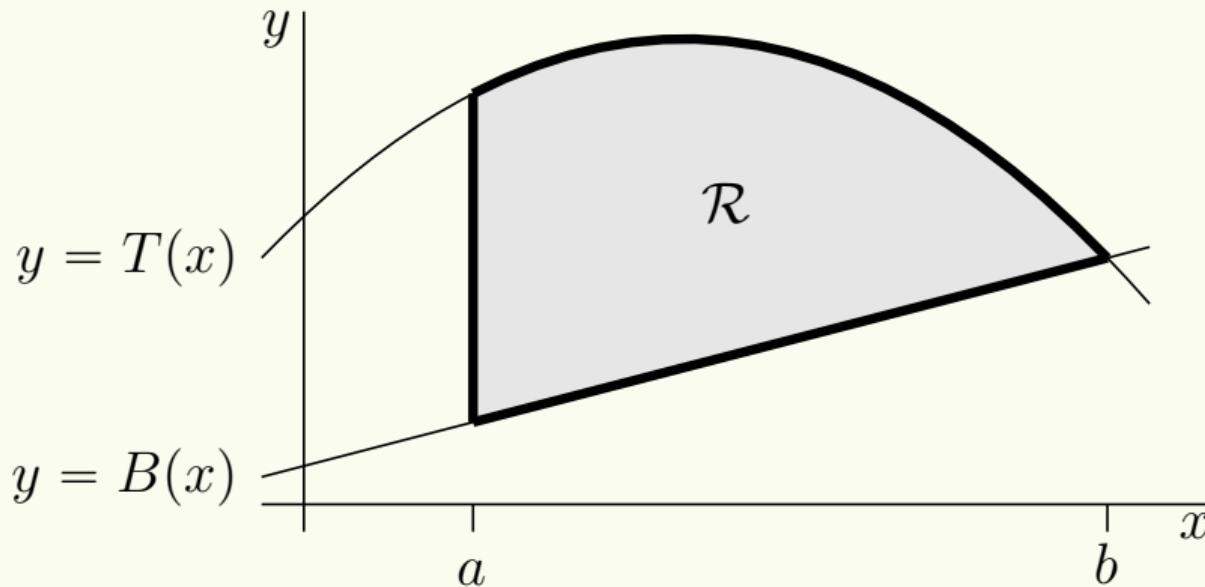
- ☐ Recall the concept of Riemann sum.
- ☐ Define the concepts of area density and mass.
- ☐ Construct through Riemann sum a double integral based on vertical slices.
- ☐ Construct through Riemann sum a double integral based on horizontal slices.
- ☐ Distinguish between inside and outside integrals, and elaborate the notion of “integrated out.”
- ☐ Develop an intuitive understanding of Fubini’s theorem.
- ☐ Analyze and apply the special case of double integral.

US 2024 Presidential Election Results



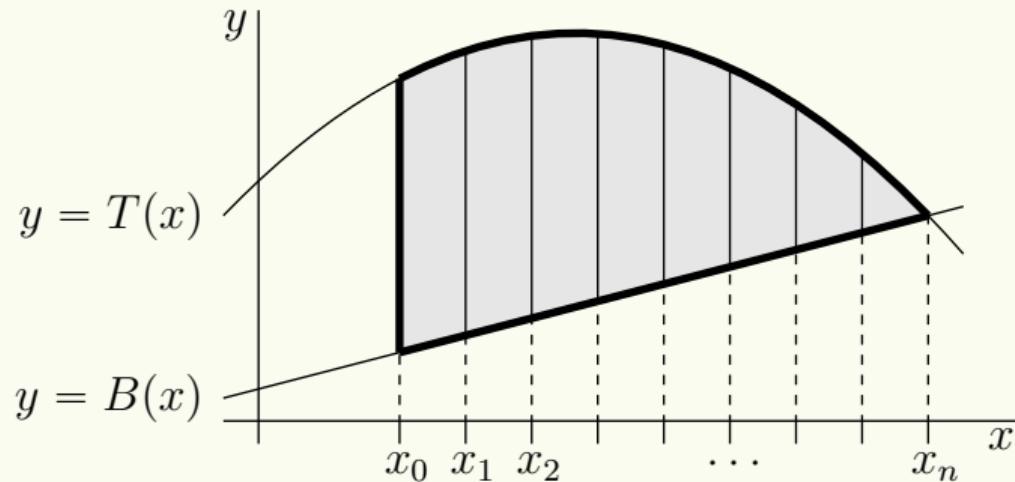
Density, Area, and Mass

$$R = \{ (x, y) \mid a \leq x \leq b, B(x) \leq y \leq T(x) \}$$



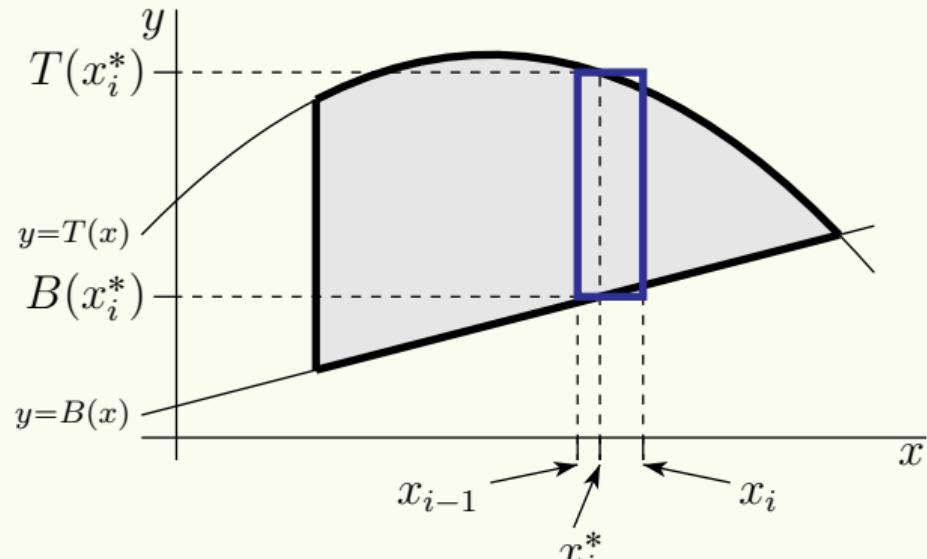
Vertical Slices

- Subdivide R into n narrow **vertical slices**, each of width $\Delta x = \frac{b-a}{n}$.
- Denote by $x_i = a + i \Delta x$ the x -coordinate of the right-hand edge of slice number i



Vertical Rectangle

- For each $i = 1, 2, \dots, n$, slice number i has x running from x_{i-1} to x_i . We approximate its **area** by the area of a rectangle.
- We pick a number x_i^* between x_{i-1} and x_i and approximate the slice by a rectangle whose **top** is at $y = T(x_i^*)$ and whose **bottom** is at $y = B(x_i^*)$.



Definite Integral

- Thus the **area** of slice i is approximately $[T(x_i^*) - B(x_i^*)]\Delta x$.
- So the **Riemann sum** approximation of the area of R is

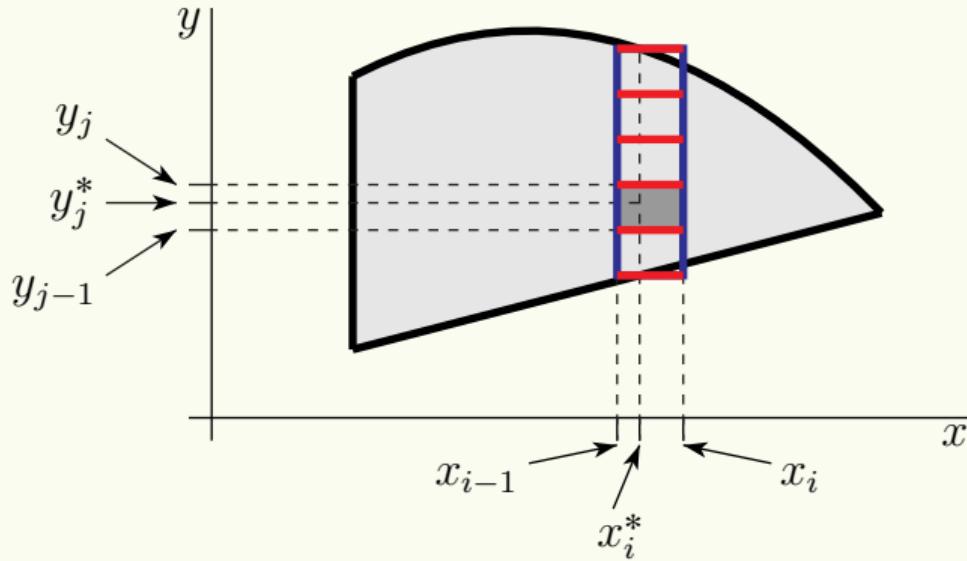
$$\text{Area} \approx \sum_{i=1}^n [T(x_i^*) - B(x_i^*)]\Delta x.$$

- By taking the **limit** as $n \rightarrow \infty$ (i.e. taking the limit as the width of the rectangles goes to zero), we convert the Riemann sum into a **definite integral** and at the same time our approximation of the area becomes the exact area:

$$\text{Area} = \lim_{n \rightarrow \infty} \sum_{i=1}^n [T(x_i^*) - B(x_i^*)]\Delta x = \int_a^b [T(x) - B(x)] dx.$$

Subdivision

- Subdivide slice number i into m tiny rectangles, each of width Δx and of height $\Delta y = \frac{1}{m} [T(x_i^*) - B(x_i^*)]$.
- Denote by $y_j = B(x_i^*) + j \Delta y$ the y -coordinate of the top of rectangle number j .



Approximation of Mass

- At this point we approximate the **density** inside each rectangle by a constant.
- For each $j = 1, 2, \dots, m$, rectangle number j has y running from y_{j-1} to y_j . We pick a number y_j^* between y_{j-1} and y_j and approximate the density on rectangle number j in slice number i by the constant $f(x_i^*, y_j^*)$.
- Thus the mass of rectangle number j in slice number i is approximately $f(x_i^*, y_j^*) \Delta x \Delta y$.
- So the Riemann sum approximation of the mass of slice number i is

$$\text{Mass of slice } i \approx \sum_{j=1}^m f(x_i^*, y_j^*) \Delta x \Delta y.$$

Note that the y_j^* 's depend on i and m .

Exact Mass

- By taking the limit as $m \rightarrow \infty$ (i.e. taking the limit as the height of the rectangles goes to zero), we convert the Riemann sum into a definite integral:

$$\text{Mass of slice } i \approx \Delta x \int_{B(x_i^*)}^{T(x_i^*)} f(x_i^*, y) \, dy = F(x_i^*) \Delta x,$$

where

$$F(x) = \int_{B(x)}^{T(x)} f(x, y) \, dy.$$

First Double Integral

- ☞ Notice that, while we started with the density $f(x, y)$ being a function of both x and y , by taking the limit of this Riemann sum, we have “**integrated out**” the dependence on y . As a result, $F(x)$ is a function of x only.
- ☞ Finally, taking the limit as $n \rightarrow \infty$ we get

$$\text{Mass} = \lim_{n \rightarrow \infty} \sum_{i=1}^n \Delta x \int_{B(x_i^*)}^{T(x_i^*)} f(x_i^*, y) \, dy = \lim_{n \rightarrow \infty} \sum_{i=1}^n F(x_i^*) \Delta x.$$

- ☞ Now we are back to our familiar 1-variable territory. The sum $\sum_{i=1}^n F(x_i^*) \Delta x$ is a Riemann sum approximation to the integral $\int_a^b F(x) \, dx$. So

$$\text{Mass} = \int_a^b F(x) \, dx = \int_a^b \left[\int_{B(x)}^{T(x)} f(x, y) \, dy \right] \, dx.$$

Notation for Top and Bottom

👁 Iterated integral

$$\begin{aligned}\iint_R f(x, y) \, dx \, dy &= \int_a^b \left[\int_{B(x)}^{T(x)} f(x, y) \, dy \right] \, dx \\ &= \int_a^b \int_{B(x)}^{T(x)} f(x, y) \, dy \, dx \\ &= \int_a^b dx \int_{B(x)}^{T(x)} dy f(x, y).\end{aligned}$$

Evaluation of $\int_a^b \int_{B(x)}^{T(x)} f(x, y) \, dy \, dx$

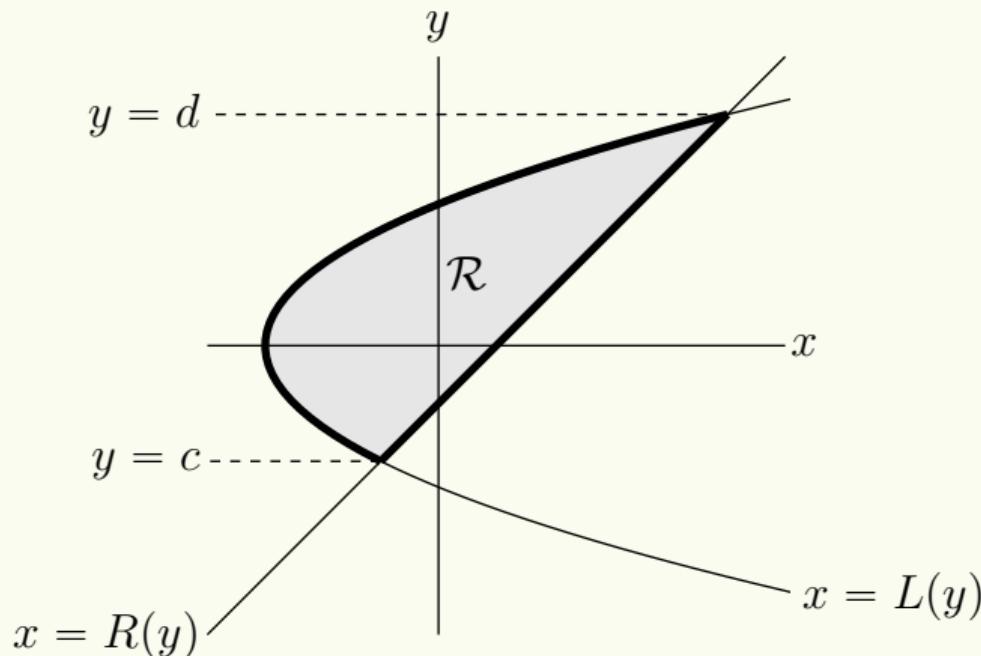
- First evaluate the inside integral $\int_{B(x)}^{T(x)} f(x, y) \, dy$ using the inside limits of integration, and by treating x as a constant and using standard **single-variable integration** techniques.
- The result of the **inside integral** is a function of x only. Call it $F(x)$.
- Then evaluate the **outside integral** $\int_a^b F(x) \, dx$, whose **integrand** is the answer to the inside integral.
- Again, this integral is evaluated using standard single-variable integration techniques.

Evaluation of $\int_a^b dx \int_{B(x)}^{T(x)} dy f(x, y)$

- 👁 First evaluate the inside integral $\int_{B(x)}^{T(x)} dy f(x, y)$ using the limits of integration that are directly beside the dy .
- 👁 Indeed the dy is written directly beside $\int_{B(x)}^{T(x)}$ to make it clear that the limits of integration $B(x)$ and $T(x)$ are for the y -integral.
- 👁 In the past you probably wrote this integral as $\int_{B(x)}^{T(x)} f(x, y) dy$. The result of the inside integral is again a function of x only. Call it $F(x)$.
- 👁 Then evaluate the outside integral $\int_a^b dx F(x)$, whose **integrand** is the answer to the inside integral and whose limits of integration are directly beside the dx .

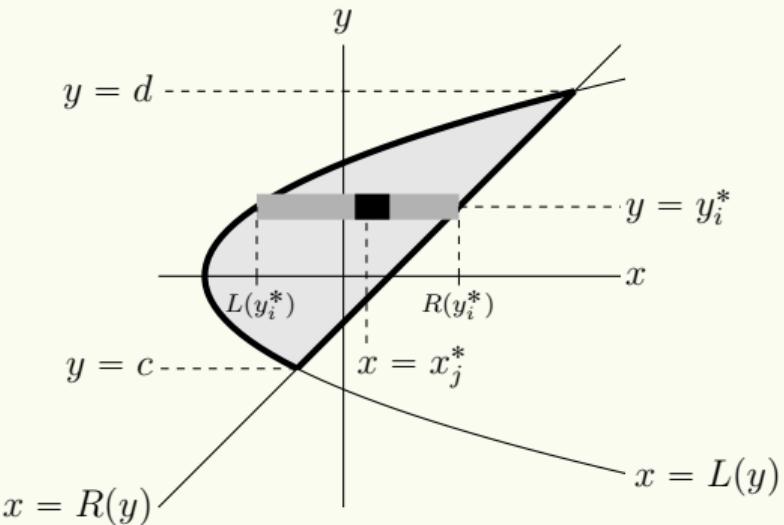
Region R

$$R = \{ (x, y) \mid c \leq y \leq d, L(y) \leq x \leq R(y) \}$$



Horizontal Slice

- + Subdivide the interval $c \leq y \leq d$ into n narrow subintervals, each of width $\Delta y = \frac{d - c}{n}$.
- + We approximate slice number i by a thin horizontal rectangle. On this slice, the y -coordinate runs over a very narrow range. We pick a number y_i^* , somewhere in that range.

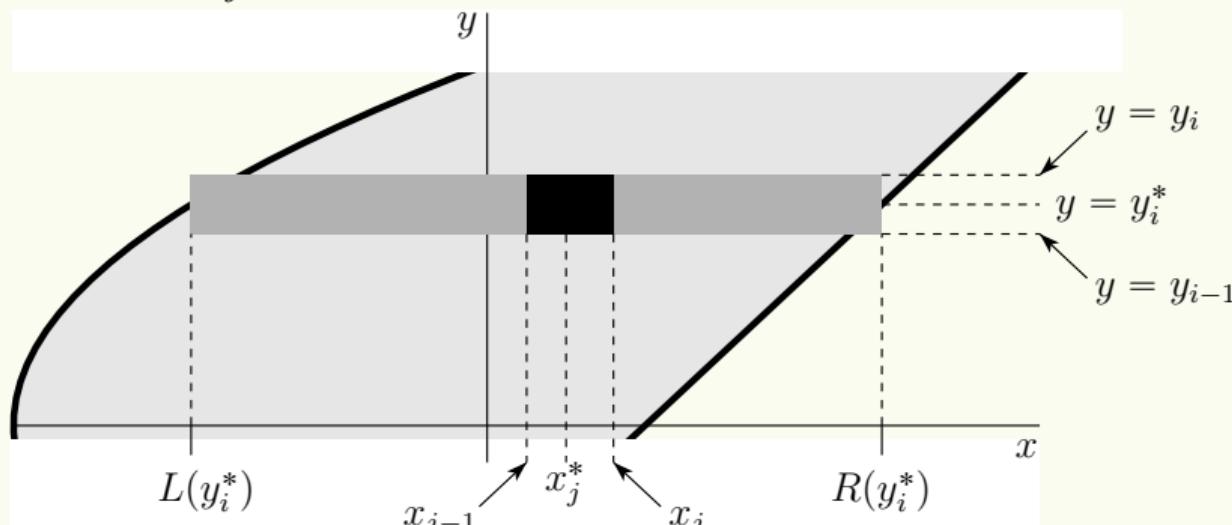


Horizontal Slice (Con'td)

- + We approximate slice i by a rectangle whose **left** side is at $x = L(y_i^*)$ and whose **right** side is at $x = R(y_i^*)$.
- + If we were computing the area of R , we would now approximate the area of slice i by $[R(x_i^*) - L(x_i^*)]\Delta y$, which is the area of the rectangle with width $[R(x_i^*) - L(x_i^*)]$ and height Δy .

Horizontal Rectangle

- Subdivide slice number i into m tiny rectangles, each of height Δy and of width $\Delta x = \frac{1}{m} [R(y_i^*) - L(y_i^*)]$.
- For each $j = 1, 2, \dots, m$, rectangle number j has x running over a very narrow range. We pick a number x_j^* somewhere in that range.



Riemann Sum Approximation

- + On rectangle number j in slice number i , we approximate the density by $f(x_j^*, y_i^*)$, giving us that the mass of rectangle number j in slice number i is approximately $f(x_j^*, y_i^*) \Delta x \Delta y$.
- + So the Riemann sum approximation of the mass of (horizontal) slice number i is

$$\text{Mass of slice } i \approx \sum_{j=1}^m f(x_j^*, y_i^*) \Delta x \Delta y.$$

- + By taking the limit as $m \rightarrow \infty$, we convert the Riemann sum into a **definite integral**:

$$\text{Mass of slice } i \approx \Delta y \int_{L(y_i^*)}^{R(y_i^*)} f(x, y_i^*) \, dx = F(y_i^*) \Delta y.$$

$$\text{where } F(y) = \int_{L(y)}^{R(y)} f(x, y) \, dx.$$

Exact Mass

- + Observe that, as x has been integrated out, $F(y)$ is a function of y only, not of x and y .
- + Finally taking the limit as $n \rightarrow \infty$ (i.e. taking the limit as the slice width goes to zero), we get

$$\text{Mass} = \lim_{n \rightarrow \infty} \sum_{i=1}^n \Delta y \int_{L(y_i^*)}^{R(y_i^*)} f(x, y_i^*) \, dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n F(y_i^*) \Delta y.$$

- + Now $\sum_{i=1}^n F(y_i^*) \Delta y$ is a Riemann sum approximation to the integral $\int_c^d F(y) \, dy$. So

$$\text{Mass} = \int_c^d F(y) \, dy = \int_c^d \left[\int_{L(y)}^{R(y)} f(x, y) \, dx \right] \, dy.$$

Notation for Left and Right

+ Iterated integrals

$$\begin{aligned}\iint_R f(x, y) \, dx \, dy &= \int_c^d \left[\int_{L(y)}^{R(y)} f(x, y) \, dx \right] \, dy \\ &= \int_c^d \int_{L(y)}^{R(y)} f(x, y) \, dx \, dy \\ &= \int_c^d \, dy \int_{L(y)}^{R(y)} \, dx \, f(x, y).\end{aligned}$$

Evaluation of $\int_c^d \int_{L(y)}^{R(y)} f(x, y) \, dx \, dy$

- + First evaluate the inside integral $\int_{L(y)}^{R(y)} f(x, y) \, dx$ using the inside limits of integration. The result of the inside integral is a function of y only. Call it $F(y)$.
- + Then evaluate the outside integral $\int_c^d F(y) \, dy$, whose **integrand** is the answer to the inside integral.

Evaluation of $\int_c^d dy \int_{L(y)}^{R(y)} dx f(x, y)$

- + First evaluate the inside integral $\int_{L(y)}^{R(y)} dx f(x, y)$ using the limits of integration that are directly beside the dx .
- + Again, the dx is written directly beside $\int_{L(y)}^{R(y)}$ to make it clear that the limits of integration $L(y)$ and $R(y)$ are for the x -integral.
- + In the past you probably wrote this integral as $\int_{L(y)}^{R(y)} f(x, y) dx$. The result of the inside integral is again a function of y only. Call it $F(y)$.
- + Then evaluate the outside integral $\int_c^d dy F(y)$, whose **integrand** is the answer to the inside integral and whose limits of integration are directly beside the dy .

Summary

Theorem 3.1.

a If $R = \{ (x, y) \mid a \leq x \leq b, B(x) \leq y \leq T(x) \}$ with $B(x)$ and $T(x)$ being continuous, and if the mass density in R is $f(x, y)$, then the mass of R is

$$\int_a^b \left[\int_{B(x)}^{T(x)} f(x, y) dy \right] dx = \int_a^b \int_{B(x)}^{T(x)} f(x, y) dy dx = \int_a^b dx \int_{B(x)}^{T(x)} dy f(x, y).$$

b If $R = \{ (x, y) \mid c \leq y \leq d, L(y) \leq x \leq R(y) \}$ with $L(y)$ and $R(y)$ being continuous, and if the mass density in R is $f(x, y)$, then the mass of R is

$$\int_c^d \left[\int_{L(y)}^{R(y)} f(x, y) dx \right] dy = \int_c^d \int_{L(y)}^{R(y)} f(x, y) dx dy = \int_c^d dy \int_{L(y)}^{R(y)} dx f(x, y).$$

Fubini's Theorem

- + The integrals of Theorem 3.1 are often denoted

$$\iint_R f(x, y) \, dx \, dy \quad \text{or} \quad \iint_R f(x, y) \, dA$$

The symbol dA represents the area of an “**infinitesimal**” piece of R .

- + Implicit in Slide 25 is the statement that, if

$$\{ (x, y) \mid a \leq x \leq b, B(x) \leq y \leq T(x) \} = \{ (x, y) \mid c \leq y \leq d, L(y) \leq x \leq R(y) \}$$

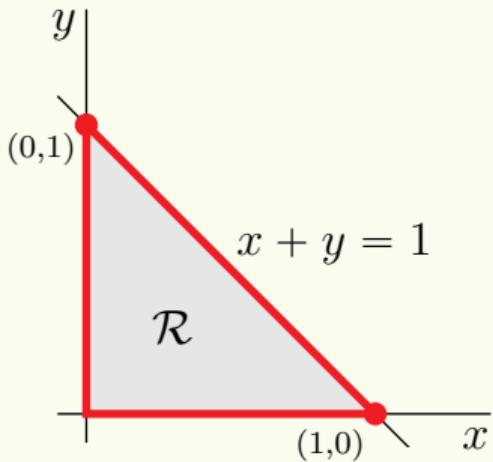
and if $f(x, y)$ is **continuous**, then

$$\int_a^b \int_{B(x)}^{T(x)} f(x, y) \, dy \, dx = \int_c^d \int_{L(y)}^{R(y)} f(x, y) \, dx \, dy.$$

- + This is called **Fubini's theorem**, named after the Italian mathematician Guido Fubini (1879–1943).

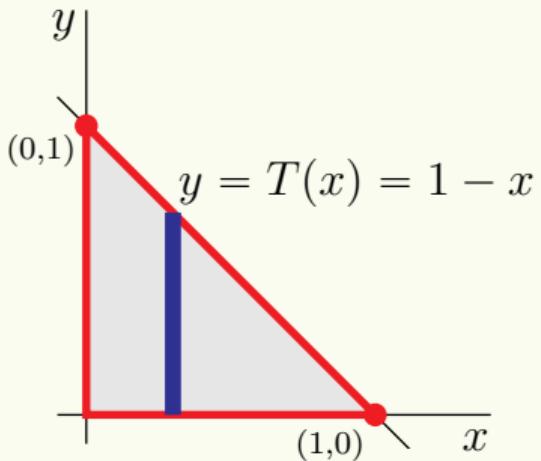
A Simple Example

- Let R be the triangular region above the x -axis, to the right of the y -axis and to the left of the line $x + y = 1$.
- Find the mass of R if it has density $f(x, y) = y$.



Solution Using Vertical Strips

- Note that the leftmost points in R have $x = 0$ and the rightmost point in R has $x = 1$.



- For each fixed x between 0 and 1, the point (x, y) in R with the smallest y has $y = 0$ and the point (x, y) in R with the largest y has $y = 1 - x$.

Solution Using Vertical Strips (Cont'd)

↳ Thus

$$R = \{(x, y) \mid 0 = a \leq x \leq b = 1, 0 = B(x) \leq y \leq T(x) = 1 - x\}$$

↳ By part (a) of Theorem 3.1

$$\text{Mass} = \int_a^b dx \int_{B(x)}^{T(x)} dy f(x, y) = \int_0^1 dx \int_0^{1-x} dy y.$$

↳ Now the inside integral is

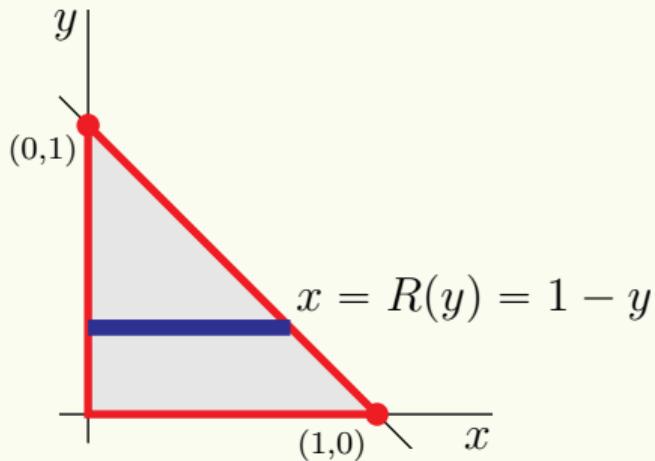
$$\int_0^{1-x} y \, dy = \left[\frac{y^2}{2} \right]_0^{1-x} = \frac{1}{2}(1-x)^2,$$

so that the

$$\text{Mass} = \int_0^1 dx \frac{(1-x)^2}{2} = \left[-\frac{(1-x)^3}{6} \right]_0^1 = \frac{1}{6}.$$

Solution Using Horizontal Strips

- Note the lowest points in R have $y = 0$ and the topmost point in R has $y = 1$.



- For each fixed y between 0 and 1, the point (x, y) in R with the smallest x has $x = 0$ and the point (x, y) in R with the largest x has $x = 1 - y$.

Solution Using Horizontal Strips (Cont'd)

↳ Thus

$$R = \{(x, y) \mid 0 = c \leq y \leq d = 1, 0 = L(y) \leq x \leq R(y) = 1 - y\}.$$

↳ By part (b) of Theorem 3.1

$$\text{Mass} = \int_c^d dy \int_{L(y)}^{R(y)} dx f(x, y) = \int_0^1 dy \int_0^{1-y} dx y.$$

↳ Now the inside integral is

$$\int_0^{1-y} y \, dx = [xy]_0^{1-y} = y - y^2,$$

since the y integral treats x as a constant, so

$$\text{Mass} = \int_0^1 dy [y - y^2] = \left[\frac{y^2}{2} - \frac{y^3}{3} \right]_0^1 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$$

Arithmetic of Integration

Theorem 4.1 (Arithmetic of Integration).

Let A, B, C be real numbers. Under the hypotheses of Theorem 3.1,

$$(a) \quad \iint_R (f(x, y) + g(x, y)) \, dx \, dy = \iint_R f(x, y) \, dx \, dy + \iint_R g(x, y) \, dx \, dy$$

$$(b) \quad \iint_R (f(x, y) - g(x, y)) \, dx \, dy = \iint_R f(x, y) \, dx \, dy - \iint_R g(x, y) \, dx \, dy$$

$$(c) \quad \iint_R C f(x, y) \, dx \, dy = C \iint_R f(x, y) \, dx \, dy$$

Arithmetic of Integration (Con'td)

Theorem 4.1 ((Con'td)).

Combining these three rules we have

$$(d) \iint_{\mathbf{R}} (Af(x, y) + Bg(x, y)) \, dx \, dy = A \iint_{\mathbf{R}} f(x, y) \, dx \, dy + B \iint_{\mathbf{R}} g(x, y) \, dx \, dy$$

$$(e) \iint_{\mathbf{R}} \, dx \, dy = \text{Area}(\mathbf{R})$$

$$(f) \iint_{\mathbf{R}} f(x, y) \, dx \, dy = \iint_{\mathbf{R}_1} f(x, y) \, dx \, dy + \iint_{\mathbf{R}_2} f(x, y) \, dx \, dy$$

if the two regions \mathbf{R}_1 and \mathbf{R}_2 do not intersect.

Special Case

Theorem 4.2.

If the domain of integration

$$R = \{(x, y) | a \leq x \leq b, c \leq y \leq d\}$$

is a rectangle and the integrand is the product $f(x, y) = g(x)h(y)$, then

$$\iint_R f(x, y) \, dx \, dy = \left[\int_a^b dx \, g(x) \right] \left[\int_c^d dy \, h(y) \right].$$

Inequalities for Integrals (1)

Theorem 4.3 (Inequalities for Integrals).

Under the assumptions of Theorem 3.1,

a *If $f(x, y) \geq 0$ for all (x, y) in R , then*

$$\iint_R f(x, y) \, dx \, dy \geq 0.$$

b *If there are constants m and M such that $m \leq f(x, y) \leq M$ for all (x, y) in R , then*

$$m \, \text{Area}(R) \leq \iint_R f(x, y) \, dx \, dy \leq M \, \text{Area}(R).$$

Inequalities for Integrals (2)

Theorem 4.3 (Con'td).

c If $f(x, y) \leq g(x, y)$ for all (x, y) in R , then

$$\iint_R f(x, y) \, dx \, dy \leq \iint_R g(x, y) \, dx \, dy.$$

d We have

$$\left| \iint_R f(x, y) \, dx \, dy \right| \leq \iint_R |f(x, y)| \, dx \, dy.$$

Example 1

- Evaluate $\iint_D 42y^2 - 12x \, dx \, dy$ where $D = \{(x, y) | 0 \leq x \leq 4, (x-2)^2 \leq y \leq 6\}$.
- Define $I := \iint_D 42y^2 - 12x \, dx \, dy = \int_0^4 \int_{(x-2)^2}^6 42y^2 - 12x \, dy \, dx$.
- Hence,

$$\begin{aligned} I &= \int_0^4 \int_{(x-2)^2}^6 42y^2 - 12x \, dy \, dx = \int_0^4 (14y^3 - 12xy) \Big|_{(x-2)^2}^6 \, dx \\ &= \int_0^4 3024 - 72x - 14(x-2)^6 + 12x(x-2)^2 \, dx \\ &= \dots \end{aligned}$$

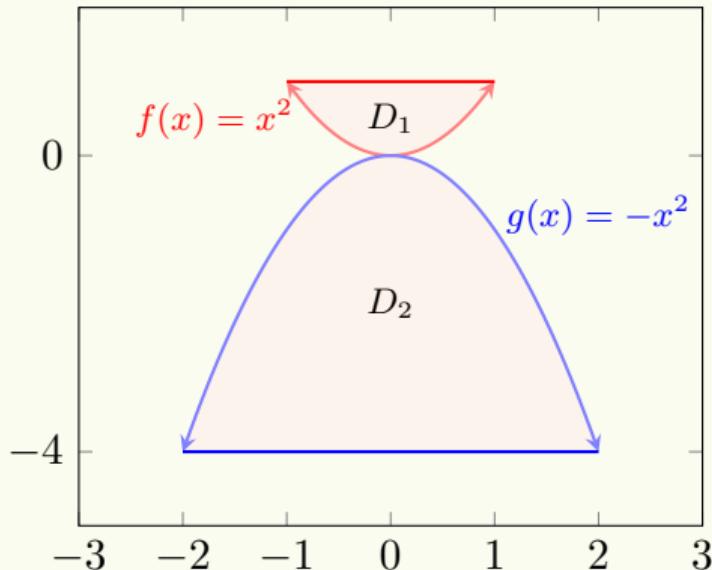
Example 2

⦿ Evaluate $I := \iint_D 2yx^2 + 9y^3 \, dx \, dy$ where D is the region bounded by $y = \frac{2}{3}x$ and $y = 2\sqrt{x}$.

$$\begin{array}{ll} 0 \leq x \leq 9 & 0 \leq y \leq 6 \\ \frac{2}{3}x \leq y \leq 2\sqrt{x} & \text{or} & \frac{1}{4}y^2 \leq x \leq \frac{3}{2}y \end{array}$$

$$\begin{aligned} I &= \int_0^9 \int_{\frac{2}{3}x}^{2\sqrt{x}} 2yx^2 + 9y^3 \, dy \, dx = \int_0^9 \left(y^2x^2 + \frac{9}{4}y^4 \right) \Big|_{\frac{2}{3}x}^{2\sqrt{x}} \, dx \\ &= \int_0^9 4x(x^2) + \frac{9}{4}(16x^2) - \left[\frac{4}{9}x^2(x^2) + \frac{9}{4}\left(\frac{16}{81}x^4\right) \right] \, dx \\ &= \int_0^9 36x^2 + 4x^3 - \frac{8}{9}x^4 \, dx = 12x^3 + x^4 - \frac{8}{45}x^5 \Big|_0^9 = \frac{24057}{5}. \end{aligned}$$

Example 3 Question



☞ What is $\iint_D 3 - 6xy \, dx \, dy$, where D is the region shown on the left?

Example 3 Answer

- >We write $\iint_D 3 - 6xy \, dx \, dy = \iint_{D_1} 3 - 6xy \, dx \, dy + \iint_{D_2} 3 - 6xy \, dx \, dy.$
- The two regions are

$$\begin{array}{ll}
 D_1 & D_2 \\
 -1 \leq x \leq 1 & -2 \leq x \leq 2 \\
 x^2 \leq y \leq 1, & -4 \leq y \leq -x^2.
 \end{array}$$

- Therefore, $\iint_D 3 - 6xy \, dx \, dy = \int_{-1}^1 \int_{x^2}^1 3 - 6xy \, dy \, dx + \int_{-2}^2 \int_{-x^2}^{-4} 3 - 6xy \, dy \, dx .$

Example 3 Answer (Cont'd)

⦿ It follows that

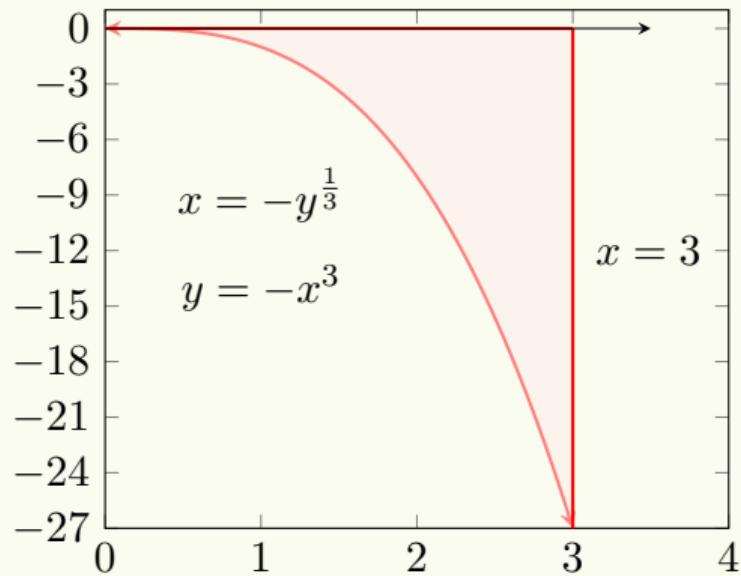
$$\begin{aligned}
 \iint_D 3 - 6xy \, dx \, dy &= \int_{-1}^1 (3y - 3xy^2) \Big|_{x^2}^1 \, dx + \int_{-2}^2 (3y - 3xy^2) \Big|_{-4}^{-x^2} \, dx \\
 &= \int_{-1}^1 3x^5 - 3x^2 - 3x + 3 \, dx + \int_{-2}^2 12 + 48x - 3x^2 - 3x^5 \, dx.
 \end{aligned}$$

⦿ The answer is

$$\begin{aligned}
 &\left(\frac{1}{2}x^6 - x^3 - \frac{3}{2}x^2 + 3x \right) \Big|_{-1}^1 + \left(12x + 24x^2 - x^3 - \frac{1}{2}x^6 \right) \Big|_{-2}^2 \\
 &= 4 + 32 \\
 &= 36.
 \end{aligned}$$

Example 4

Evaluate $\iint_D \frac{1}{y^{\frac{1}{3}}(x^3 + 1)} dx dy$ where D is the region bounded by $x = -y^{\frac{1}{3}}$, $x = 3$ and the x -axis.



Example 4 Answer

- ⦿ $0 \leq x \leq 3$
- ⦿ $-x^3 \leq y \leq 0$
- ⦿ $-27 \leq y \leq 0$
- ⦿ $-y^{\frac{1}{3}} \leq x \leq 3$
- ⦿ Thus,

$$\begin{aligned}
 \iint_D \frac{1}{y^{\frac{1}{3}}(x^3 + 1)} dx dy &= \int_0^3 \int_{-x^3}^0 \frac{1}{y^{\frac{1}{3}}(x^3 + 1)} dy dx = \int_0^3 \left(\frac{\frac{3}{2}y^{\frac{2}{3}}}{(x^3 + 1)} \right) \Big|_{-x^3}^0 dx \\
 &= \int_0^3 -\frac{\frac{3}{2}(-x^3)^{\frac{2}{3}}}{(x^3 + 1)} dx = -\int_0^3 \frac{\frac{3}{2}x^2}{(x^3 + 1)} dx \\
 &= -\int_0^3 \frac{\frac{1}{2}}{(x^3 + 1)} d(x^3) = -\frac{1}{2} \ln|x^3 + 1| \Big|_0^3 \\
 &= -\frac{\ln(28)}{2}.
 \end{aligned}$$

Example

¶ Evaluate $I = \int_0^\infty \left(\frac{1 - e^{-x}}{x} \right)^2 dx$.

¶ Solution: Reverse the integration

$$\begin{aligned} I &= \int_0^\infty \left(\frac{-e^{-xy}}{x} \Big|_{y=0}^{y=1} \right)^2 dx = \int_0^\infty \left(\int_0^1 e^{-xy} dy \right)^2 dx = \int_0^\infty \int_0^1 e^{-xy} dy \int_0^1 e^{-xz} dz dx \\ &= \int_0^1 \int_0^1 \int_0^\infty e^{-x(y+z)} dx dy dz \end{aligned}$$

¶ It is easy to integrate $\int_0^\infty e^{-x(y+z)} dx$, resulting in

$$\int_0^\infty e^{-x(y+z)} dx = \frac{-e^{-x(y+z)}}{y+z} \Big|_{x=0}^{x=\infty} = \frac{1}{y+z}.$$

¶ Therefore.

$$I = \int_0^1 \int_0^1 \frac{1}{y+z} dy dz = \int_0^1 \ln(y+z) \Big|_{y=0}^{y=1} dz = \int_0^1 (\ln(z+1) - \ln z) dz$$

¶ By integration by parts, we know that $\int \ln x dx = x \ln x - x + C$.

¶ The answer is

$$I = \left((z+1) \ln(z+1) - (z+1) - z \ln z + z \right) \Big|_{z=0}^{z=1}$$
$$= 2 \ln 2.$$

Keywords

area, 7
area , 8
bottom, 7
continuous, 26
definite integral, 8, 20
density, 10
Fubini's theorem, 26
infinitesimal, 26
inside integral, 14
integrand, 14, 15, 23, 24
integrated out, 12

Iterated integral, 13
Iterated integrals, 22
left, 18
limit, 8
Mass, 10
outside integral, 14
Riemann sum, 8
right, 18
single-variable integration, 14
top, 7
vertical slices, 6