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Example 1: Integration by Parts I

Use integration by parts to evaluate
∫ ∞

0
x e−x dx .

Solution: ∫
u dv = uv −

∫
v du∫

x

u

e−x dx

dv

= x

u

(−e−x)

v

−
∫

−e−x

v

dx

du∫
x e−x dx = −x e−x − e−x + C
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Example 1(Cont’d)

∫ ∞

0
x e−x dx =

(
− x e−x − e−x

)∣∣∣∣∣
∞

0

= lim
x→∞

(−x e−x − e−x) − (−0 e0 − e0)

= −
(
lim
x→∞

x

ex

)
−

(
lim
x→∞

e−x
)

− (0− 1)

= 0 − 0 + 1 = 1 .
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What if?

a What would happen if we let u = e−x and dv = x dx?

a Answer: In this case du = −e−x dx and v =

∫
dv =

∫
x dx =

1

2
x2, so that

∫
x e−x dx =

∫
e−x

u

x dx

dv

= e−x

u

1

2
x2

v

−
∫

1

2
x2

v

(−e−x) dx

du

=
1

2
x2 e−x +

1

2

∫
x2 e−x dx

a It leads us to the wrong direction—a more difficult integral than the original.
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What’s going on?

a Evaluate
∫

dx

x
using integration by parts.

a Let u =
1

x
and dv = dx, so that du = −dx

x2
and v = x,

a Then ∫
u dv = uv −

∫
v du∫

dx

x
=

(
1

x

)
· x −

∫
x ·

(
−dx

x2

)
∫

dx

x
= 1 +

∫
dx

x

0 = 1 ?
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General Case of Failure
a How does this “contradiction” occur?

a Integrating by parts the following integral I =

∫
f ′(x)

f(x)
dx.

a Let u =
1

f(x)
and dv = f ′(x)dx. Thus du = − f ′(x)

(f(x))2
dx and v = f(x).

I =

∫
f ′(x)

f(x)
dx =

1

f(x)
f(x)−

∫ (
− f ′(x)

(f(x))2

)
f(x)dx

= 1 +

∫
f ′(x)

f(x)
dx.

a We then get I = 1 + I.
a There is no contradiction because the constants of integration are different on both

sides. We should not use integration by parts in the first place.
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Example 2: More than One Integration by Parts

a Evaluate
∫

x2 e−x dx .

Solution:
a Choose u = x2 and so dv = e−x dx. Then du = 2x dx and v =

∫
e−x dv = −e−x.

a Integrate by parts with the formula
∫

u dv = uv −
∫

v du.∫
x2 e−x dx = x2 · (−e−x) −

∫
−e−x · 2x dx

= −x2 e−x + 2

∫
x e−x dx (integrate by parts again)∫

x2 e−x dx = −x2 e−x + 2 (−x e−x − e−x) + C (by Example 1)

= −x2 e−x − 2x e−x − 2 e−x + C.
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Integration by Parts n Rounds
a In general, if n rounds of integration by parts were needed, with ui and vi

representing the u and v, respectively, for round i = 1, 2, . . ., n, then∫
u1 dv1 = u1v1 −

∫
v1 du1 = u1v1 −

∫
u2 dv2

= u1v1 −
(
u2v2 −

∫
v2 du2

)
= u1v1 − u2v2 +

∫
u3 dv3

= u1v1 − u2v2 +

(
u3v3 −

∫
u4 dv4

)
= u1v1 − u2v2 + u3v3 −

(
u4v4 −

∫
u5 dv5

)
= · · ·

= u1v1 − u2v2 + u3v3 − u4v4 + u5v5 − · · ·
∫

un dvn.

a The last integral
∫

un dvn is one you could presumably integrate easily.
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Tabular Method
a Let the arrows indicate multiplication. Then

u dv

u1 dv1
u2 v1 (+) + u1 v1
u3 v2 (–) − u2 v2
u3 v3 (+) + u3 v3
u4 v4 (–) − u4 v4

...
...

...

a The idea is to differentiate down the u column and integrate down the dv column.

a This tabular method allows the integration by parts to be performed efficiently and
correctly.
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Example of Tabular Method

a The tabular method on the integral from the previous example looks like this:
u dv

x2 e−x dx
2x −e−x (+) + (x2) (−e−x)

2 e−x (–) − (2x) (e−x)

0 −e−x (+) + (2) (−e−x)STOP

a The integral is the sum of the products, and agrees with the result:∫
x2 e−x dx = + (x2) (−e−x) − (2x) (e−x) + (2) (−e−x) + C

= −x2 e−x − 2x e−x − 2 e−x + C
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Example 3

a Evaluate
∫

x3 e−x dx .

Solution: Use the tabular method with u = x3 and dv = e−x dx as follows:

u dv

x3 e−x dx

3x2 −e−x (+) + (x3) (−e−x)

6x e−x (–) − (3x2) (e−x)

6 −e−x (+) + (6x) (−e−x)

0 e−x (–) − (6) (e−x)STOP∫
x3 e−x dx = −x3 e−x − 3x2 e−x − 6x e−x − 6 e−x + C.
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Gamma Function

a In general, we have Gamma function:

Γ (n) =

∫ ∞

0
xn−1 e−x dx for all n > 0.

a It is a generalization of factorial.

Γ (n) = (n− 1)! for all positive whole numbers larger than 0.

a From Example 3:

Γ(4) =

∫ ∞

0
x3 e−x dx =

(
− x3 e−x − 3x2 e−x − 6x e−x − 6 e−x)

∣∣∣∣∞
0

= (−0− 0− 0− 0)− (−0− 0− 0− 6) = 6 .
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Example 4: Summary

Evaluate
∫ 1

0
x3

√
1− x2 dx .

Solution: Use the method of integration by parts.
a We have x3

√
1− x2 = x2 · x

√
1− x2. It is easy to integrate x

√
1− x2.

a So let u = x2 and dv = x
√
1− x2 dx.

a Then du = 2x dx and v =

∫
dv =

∫
x
√

1− x2 dx = −1

3
(1− x2)3/2. Thus,

∫ 1

0
x3

√
1− x2 dx = −x2

3
(1− x2)3/2

∣∣∣∣∣
1

0

+

∫ 1

0

2x

3
(1− x2)3/2 dx

= (0− 0) +

−2

15
(1− x2)5/2

∣∣∣∣∣
1

0

 = 0 +
2

15
=

2

15
.
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Preparation: I =

∫
sec(x) dx = ln | tan(x) + sec(x)|+ C

b We write
∫

sec(x)dx =

∫
1

cos(x)
dx =

∫
cos(x)

cos2(x)
dx =

∫
cos(x)

1− sin2(x)
dx.

b Then use the substitution y = sin(x), dy = cos(x)dx and then use partial fractions.

I =

∫
1

1− y2
dy =

∫
1

(1 + y)(1− y)
dy =

1

2

∫
1

1 + y
+

1

1− y
dy

=
1

2

∫
1

y + 1
− 1

y − 1
dy =

1

2
(ln |y + 1| − ln |y − 1|) + C =

1

2
ln

∣∣∣∣sin(x) + 1

sin(x)− 1

∣∣∣∣+ C.

b After a bit of rewriting, we obtain√∣∣∣∣sin(x) + 1

sin(x)− 1

∣∣∣∣ =
√∣∣∣∣(sin(x) + 1)2

sin2(x)− 1

∣∣∣∣ =
√∣∣∣∣(sin(x) + 1)2

− cos2(x)

∣∣∣∣ = ∣∣∣∣sin(x) + 1

cos(x)

∣∣∣∣ = | tan(x) + sec(x)|.
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Example 5

Evaluate
∫

sec3 x dx .

Solution: Let u = sec x and dv = sec2 x dx. Use the integration by parts.

b So du = sec x tan x dx and v =

∫
dv =

∫
sec2 x dx = tan x. Then∫

sec3 x dx = sec x tan x −
∫

sec x tan2 x dx∫
sec3 x dx = sec x tan x −

∫
sec x (sec2 x − 1) dx∫

sec3 x dx = sec x tan x +

∫
sec x dx −

∫
sec3 x dx

2

∫
sec3 x dx = sec x tan x + ln | sec x + tan x | + C∫
sec3 x dx =

1

2
(sec x tan x + ln | sec x + tan x |) + C
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Product to Sum

sin A cos B =
1

2
(sin (A+B) + sin (A−B)) (1)

cos A sin B =
1

2
(sin (A+B) − sin (A−B)) (2)

cos A cos B =
1

2
(cos (A+B) + cos (A−B)) (3)

sin A sin B = −1

2
(cos (A+B) − cos (A−B)) (4)
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Example 6

Evaluate
∫

1

2
sin x sin 12x dx .

Solution: Using the product-to-sum formula (4) with A = x and B = 12x,

sin A sin B = −1
2 (cos (A+B) − cos (A−B))

sin x sin 12x = −1
2 (cos (x+ 12x) − cos (x− 12x))

sin x sin 12x = −1
2 (cos 13x − cos 11x)

since cos (−11x) = cos 11x. Then∫
1

2
sin x sin 12x dx = −1

4

∫
(cos 13x − cos 11x) dx

= − 1

52
sin 13x +

1

44
sin 11x + C.

Christopher Ting Practical English II July 11, 2025 Ver 1.1 18/42



Integration by Parts Trigonometric Integrals Feynman’s Technique Keywords

Discussion of Example 6

b Notice how the product-to-sum formula turned an integral of products of sines into
integrals of individual cosines, which are easily integrated.

b The integrand is an example of a modulated wave, commonly used in electronic
communications (e.g. radio broadcasting).

y

x0

0.5

−0.5

y = 0.5 sinx sin 12x

π 2π

b The curves y = ±0.5 sin x (shown in dashed lines) form an amplitude envelope for
the modulated wave.
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Higher Power of Sine
b For the sine function raised to odd powers of the form 2n+ 1 (for n ≧ 1), the trick is to

replace sin2 x by 1− cos2 x.

∫
sin2n+1 x dx =

∫
(sin2 x)n sin x dx

=

∫
(1− cos2 x)n sin x dx

=

∫
p(u) du.

b The function p(u) is a polynomial in the variable u = cos x, and the remaining single
sin x is now part of du = − sin x dx.

b Then use the power formula to integrate that polynomial.
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Example 7

Evaluate
∫

sin3 x dx .

Solution: Let u = cos x so that du = − sin x dx:∫
sin3 x dx =

∫
(sin2 x) sin x dx =

∫
(1− cos2 x) sin x dx

=

∫
(1− u2) (−du) =

∫
(u2 − 1) du

=
1

3
u3 − u + C

=
1

3
cos3 x − cos x + C.
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Higher Power of Cosine

b In general
∫
sin2n+1 x dx will be a polynomial of degree 2n+ 1 in terms of cos x.

b Similarly, use cos2 x = 1− sin2 x to integrate odd powers of cos x, with the substitution
u = sin x: ∫

cos2n+1 x dx =

∫
(cos2 x)n cos x dx

=

∫
(1− sin2 x)n

p(u)

cos x dx

du

.

b Integrals of the form
∫
sinm x cosn x dx, where either m or n is odd, can be

evaluated using the above trick for the function having the odd power.
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Example 8

Evaluate
∫

sin2 x cos3 x dx .

Solution: Replace cos2 x by 1− sin2 x, then let u = sin x so that du = cos x dx:∫
sin2 x cos3 x dx =

∫
sin2 x (cos2 x) cos x dx =

∫
sin2 x (1− sin2 x)

p(u)

cos x dx

du

=

∫
(u2 − u4) du

=
1

3
u3 − 1

5
u5 + C

=
1

3
sin3 x − 1

5
sin5 x + C.
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Example 9: Even Power of Sine

Evaluate
∫

sin4 x dx .

Solution: Replace sin2 x by
1− cos 2x

2
:∫

sin4 x dx =

∫ (
1 − cos 2x

2

)2

dx =
1

4

∫
(1 − 2 cos 2x + cos2 2x) dx

=
1

4

∫ (
1 − 2 cos 2x +

1 + cos 4x

2

)
dx

=
1

8

∫
(3 − 4 cos 2x + cos 4x) dx

=
3x

8
− 1

4
sin 2x +

1

32
sin 4x + C.
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Even Power of Sine and Cosine

b For even powers of sin x or cos x, replace sin2 x or cos2 x with either

sin2 x =
1 − cos 2x

2
or cos2 x =

1 + cos 2x

2
,

respectively, as often as necessary, then proceed as before if odd powers occur.
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sec x with tanx (1 of 2)
b Similar methods can be used for integrals of the form

∫
secm x tann x dx when

either m is even or n is odd.

b For an even power m = 2k + 2, use sec2 x = 1 + tan2 x for all but two of the m powers
of sec x, then use the substitution u = tan x, so that du = sec2 x dx.

b This results in an integral of a polynomial p(u) in terms of u = tan x:∫
sec2k+2 x tann x dx =

∫
(sec2 x)k sec2 x tann x dx

=

∫
(1 + tan2 x)k tann x

p(u)

sec2 x dx

du

.
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sec x with tanx (2 of 2)
b Likewise for an odd power n = 2k + 1, use tan2 x = sec2 x− 1 for all but one of the n

powers of tan x, then use the substitution u = sec x, so that du = sec x tan x dx.

b This results in an integral of a polynomial p(u) in terms of u = sec x:∫
secm x tan2k+1 x dx =

∫
secm−1 x sec x (tan2 x)k tan x dx

=

∫
secm−1 x (sec2 x− 1)k

p(u)

sec x tan xdx

du

b Mimic the above procedure for integrals of the form
∫
cscm x cotn x dx when either

m is even or n is odd, using the identity csc2 x = 1 + cot2 x in a similar manner.
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Example 10

Evaluate
∫

sec4 x tan x dx .

Solution: Use sec2 x = 1 + tan2 x for one sec2 x term, then substitute u = tan x, so that
du = sec2 x dx:∫

sec4 x tan x dx =

∫
sec2 x sec2 x tan x dx =

∫
(1 + tan2 x) tan x sec2 x dx

=

∫
(1 + u2)u du =

∫
(u+ u3) du

=
1

2
u2 +

1

4
u4 + C

=
1

2
tan2 x +

1

4
tan4 x + C.
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Example 11

b For some trigonometric integrals try putting everything in terms of sines and
cosines.

b Evaluate
∫

cot4 x

csc5 x
dx .

Solution: Put cot x and csc x in terms of sin x and cos x:∫
cot4 x

csc5 x
dx =

∫
cos4 x sin5 x

sin4 x
dx

=

∫
cos4 x sin x dx (now let u = cos x, du = − sin x dx)

= −
∫

u4 dx = −1

5
cos5 x + C.
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Example 12: Gamma Function

d It is easy to see that F (t) :=

∫ ∞

0
e−txdx =

1

t
for all t > 0.

d Differentiating F (t) with respect to t leads to

F ′(t) = −
∫ ∞

0
xe−txdx = − 1

t2
=⇒

∫ ∞

0
xe−txdx =

1

t2

d Taking further derivatives yields

F (n)(t) =

∫ ∞

0
xne−txdx =

n!

tn+1
.

d When t is set equal to one, we obtain the Gamma function:

n! =

∫ ∞

0
xne−xdx := Γ(n+ 1).
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Example 13

d Compute
∫ 1

0

x2 − 1

ln(x)
dx .

d Define G(t) :=

∫ 1

0

xt − 1

ln(x)
dx. Then G(2) is the answer we are seeking. Obviously

G(0) = 0.

d Differential G(t) withe respect to t yields

G′(t) =

∫ 1

0

∂

∂t

(
xt − 1

ln(x)

)
dx =

∫ 1

0
xtdx =

1

t+ 1
.

d Therefore

G(2) =

∫ 2

0
G′(t)dt =

∫ 2

0

1

t+ 1
dt = ln(t+ 1)

∣∣2
0
= ln(3).
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Example 14: The Dirichlet Integral

d Evaluate
∫ ∞

0

sin(x)

x
dx using Feynman’s technique.

d Let f(s) :=
∫ ∞

0
e−sx sin(x)

x
dx, which is a function of s.

d Note that f(0) is the integral we want to evaluate.

d f ′(s) =

∫ ∞

0

∂

∂s
e−sx sin(x)

x
dx =

∫ ∞

0
−e−sxsin(x) dx.

d Performing the integration by parts with u = sin(x) and dv = −e−sxdx, we obtain

du = cos(x)dx and
∫

dv = v =

∫
−e−sxdx =

1

s
e−sx.

d Therefore, f ′(s) =
1

s
sin(x)e−sx

∣∣∣∣∞
0

− 1

s

∫ ∞

0
cos(x)e−sxdx = −1

s

∫ ∞

0
cos(x)e−sxdx.
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Example 14: The Dirichlet Integral (con’td)

d We need to perform integration by parts one more time on −1

s

∫ ∞

0
cos(x)e−sxdx.

d We let u = cosx, and hence du = − sin(x)dx. And with dv = −1

s
e−sxdx, we obtain∫

dv = v =

∫
−1

s
e−sxdx =

1

s2
e−sx.

d Therefore,

f ′(s) = −
∫ ∞

0
sin(x)e−sxdx =

1

s

∫ ∞

0
cos(x)e−sxdx

=
1

s2
cos(x)e−sx

∣∣∣∣∞
0

+
1

s2

∫ ∞

0
sin(x)e−sxdx

= − 1

s2
+

1

s2

∫ ∞

0
sin(x)e−sxdx.
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Example 14: The Dirichlet Integral (con’td)

d Thus we obtain f ′(s) = − 1

s2
− 1

s2
f ′(s).

d After a re-arrangement of terms, we obtain f ′(s) = − 1

1 + s2
.

d Now, we perform an improper integration f(s) = −
∫

1

1 + s2
ds = − arctan(s) + C.

d We need to know what C is. For this purpose, we consider

lim
s→∞

f(s) = lim
s→∞

∫ ∞

0
e−sx sin(x)

x
dx =

∫ ∞

0
lim
s→∞

e−sx sin(x)

x
dx = 0.

d On the other hand, lim
s→∞

f(s) = lim
s→∞

− arctan(s) + C = −π

2
+ C.
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Example 14: The Dirichlet Integral (con’td)

d Hence we have
C = lim

s→∞
arctan(s) =

π

2
.

d Finally, we obtain

f(s) =

∫ ∞

0
e−sx sin(x)

x
dx = − arctan(s) +

π

2
.

d Since arctan(0) = 0, it must be that

f(0) =

∫ ∞

0

sin(x)

x
dx =

π

2
.
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Chi-Square Probability Density Function

d The analytical form of the chi-square probability density function (pdf) with υ
degrees of freedom is, for x ≧ 0,

f(x; υ) =
e−

x
2 x

υ
2−1

2
υ
2 Γ

(υ
2

) = Ce−
x
2 x

υ
2−1,

where C is the constant term
1

2
υ
2Γ

(υ
2

) .

d So f(x; v) is a product of exponential function and a power function.

d Slide 37 provides a plot of the chi-square pdf f(x; 12) with 12 degrees of freedom

Christopher Ting Practical English II July 11, 2025 Ver 1.1 36/42



Integration by Parts Trigonometric Integrals Feynman’s Technique Keywords

Plot of Chi-Square PDF
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Moment Generating Function

d First we compute the moment generating function

MX(t) = E
(
etX

)
= C

∫ ∞

0
etxe−

x
2 x

υ
2−1dx = C

∫ ∞

0
e−

(
1
2−t

)
xx

υ
2−1dx.

d We perform a change of variable y =

(
1

2
− t

)
x. Hence, dy =

(
1

2
− t

)
dx,

equivalently, x =
2

1− 2t
y and dx =

2

1− 2t
dy, and we get

MX(t) = C

∫ ∞

0
e−y

(
2

1− 2t
y

)υ
2−1 2

1− 2t
dy = C

∫ ∞

0
e−y

(
2

1− 2t

)υ
2−1

y
υ
2−1 2

1− 2t
dy

= C

(
2

1− 2t

)υ
2
∫ ∞

0
e−yy

υ
2−1dy.
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Gamma function

d By definition, the integral is the Gamma function Γ
(υ
2

)
. Consequently,

MX(t) =
1

2
υ
2Γ

(υ
2

) (
2

1− 2t

)υ
2
Γ
(υ
2

)
=

(
1

1− 2t

)υ
2
. (5)

d Next, we differentiate MX(t) with respect to t:

M ′
X(t) = C

∫ ∞

0
x etxe−

x
2 x

υ
2−1dx. (6)

It follows from (5) that

M ′
X(t) = −υ

2
(−2)

(
1

1− 2t

)υ
2+1

= υ

(
1

1− 2t

)υ
2+1

. (7)
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Mean of Chi-Square Random Variable

d Interestingly, the expected value of X can be obtained as follows:

M ′
X(0) = C

∫ ∞

0
x e−

x
2 x

υ
2−1dx = E(X).

d Substituting 0 for t in (7), we obtain the mean of chi-square random variable:

E(X) = M ′
X(0) = υ.

d The mean of X is its number of degrees of freedom.
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Variance of Chi-Square Random Variable

d Next, we differentiate the moment generating function (5) with respect to t twice to
obtain

M ′′
X(t) = C

∫ ∞

0
x2 etxe−

x
2 x

υ
2−1dx = υ (υ + 2)

(
1

1− 2t

)υ
2+2

,

which is the expected value of X2 when t = 0.

d In other words,
E
(
X2

)
= M ′′

X(0) = υ2 + 2υ.

d As V(X) = E
(
X2

)
− (E(X))2, the variance of chi-square random variable with υ

degrees of freedom is

V(X) = M ′′
X(0)−

(
M ′

X(0)
)2

= v2 + 2v − v2 = 2υ.
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