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Inspiring Quote

A good portfolio is more than a long list of good stocks and
bonds. It is a balanced whole, providing the investor with
protections and opportunities with respect to a wide range of
contingencies.

— Harry Markowitz
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Learning Outcomes

A Define and describe what a vector derivative is and how it works.

A Obtain a quick glimpse into partial differentiation.

A Analyze the component details of matrix calculus.

A Formulate a Lagrangian for constrained optimization with Lagrange multipliers.

A Derive the first-order conditions by applying the matrix calculus.

A Solve the first-order conditions using matrix algebra.

A Discuss the efficient frontier.
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Definition

b Let xxx be a column k-vector. Consider the function

g(xxx) = g(x1, x2, . . . , xk) : R
k −→ R.

b The vector derivative is defined as

∂

∂xxx
g(xxx) =



∂

∂x1
g(xxx)

∂

∂x2
g(xxx)

...

∂

∂xk
g(xxx)


and

∂

∂xxx⊤
g(xxx) =

[
∂

∂x1
g(xxx)

∂

∂x2
g(xxx) · · · ∂

∂xk
g(xxx)

]
.
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Basic Properties

b For constant vector aaa and matrix AAA,

∂

∂xxx

(
aaa⊤xxx

)
=

∂

∂xxx

(
xxx⊤aaa

)
= aaa,

∂

∂xxx⊤
(
aaa⊤xxx

)
= aaa⊤

∂

∂xxx⊤
(
AAAxxx
)
= AAA

∂

∂xxx

(
xxx⊤AAAxxx

)
=
(
AAA+AAA⊤)xxx

∂2

∂xxx∂xxx⊤
(
xxx⊤AAAxxx

)
= AAA+AAA⊤
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Illustration

b f(x1, x2) := a1x1 + a2x2 = aaa⊤xxx

b
[
f1(x1, x2)
f2(x2, x2)

]
:=

[
a11x1 + a12x2
a21x1 + a22x2

]
= AxAxAx.

∂

∂xxx⊤
(
AAAxxx
)
=

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

 =

[
a11 a12
a21 a22

]
= AAA.

b g(x1, x2) := xxx⊤AAAxxx = a11x
2
1 + a22x

2
2 + a12x1x2 + a21x1x2

∂

∂xxx

(
xxx⊤AAAxxx

)
=

 ∂g
∂x1

∂g
∂x2

 =

[
2a11x1 + a12x2 + a21x2
2a22x2 + a12x1 + a21x1

]
=

([
a11 a12
a21 a22

]
+

[
a11 a21
a12 a22

])[
x1
x2

]
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An Interesting Theorem of Matrix Calculation
Theorem 2.1 (Derivative of Trace).
Given two matrices XXXp×q and AAAq×p. Then

∂Tr(XAXAXA)

∂XXX
= AAA⊤.

b The product of XAXAXA is

XAXAXA =

x11 · · · x1q
...

. . .
...

xp1 · · · xpq


a11 · · · a1p

...
. . .

...
aq1 · · · aqp

 =


∑q

i=1 x1iai1 · · ·
∑q

i=1 x1iaip
...

. . .
...∑q

i=1 xpiai1 · · ·
∑q

i=1 xpiaip


b The trace of XAXAXA is the sum of the diagonal elements.

Tr(XAXAXA) =

q∑
i=1

x1iai1 + · · ·+
q∑

i=1

xpiaip =

q∑
i=1

p∑
j=1

xjiaij
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An Interesting Theorem of Matrix Calculation (Cont’d)

b Differentiate a function f(XXX) with respect to XXX is

∂f(XXX)

∂X
=


∂f(XXX)
∂x11

· · · ∂f(XXX)
∂x1q

...
. . .

...
∂f(XXX)
∂xp1

· · · ∂f(XXX)
∂xpq


b Since f(XXX) =

q∑
i=1

p∑
j=1

xjiaij , computation shows that

∂Tr(XAXAXA)

∂XXX
=


∂(

∑q
i=1

∑p
j=1 xjiaij)

∂x11
· · · ∂(

∑q
i=1

∑p
j=1 xjiaij)

∂x1q

...
. . .

...
∂(

∑q
i=1

∑p
j=1 xjiaij)

∂xp1
· · · ∂(

∑q
i=1

∑p
j=1 xjiaij)

∂xpq

 =

a11 · · · aq1
...

. . .
...

a1p · · · aqp

 = AAA⊤
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Investment

q For each dollar invested, a fraction wi is invested in asset i. It must be that
n∑

i=1

wi = 1.

q The weights are arranged as a n-vector www.

q The portfolio’s expected return and expected variance are, respectively,

µp := E
(
rp
)
=

n∑
i=1

wiE
(
ri
)
=

n∑
i=1

wi µi = www⊤µµµ;

σ2p := V
(
rp
)
=

n∑
i=1

n∑
j=1

wiwjσij = www⊤ΣΣΣwww.
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Numerical Illustration

q Suppose there are two assets. µ1 = 5% and µ2 = 8% per annum.
q The covariance is a 2 by 2 matrix.

ΣΣΣ :=

[
σ11 σ12
σ21 σ22

]
=

[
0.0625 −0.01
−0.01 0.16

]
q Given that the variance of asset 1 is 0.0625, its volatility is

√
0.0625 = 25% per

annum.

q The volatility of asset 2 is .

q The portfolio’s expected return and expected variance are, respectively,

µp = 0.05w1 + 0.08w2

σ2p = 0.0625w2
1 − 0.01w1w2 − 0.01w2w1 + 0.16w2

2
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Optimization with Constraints

s Minimize half the portfolio variance under two constrains:

n∑
i=1

wiE
(
ri
)

= E
(
rp
)
.

n∑
i=1

wi = 1.

s Constrained optimization with Lagrange multipliers λ and ψ:

min
w1,w2,...,wn

L =
1

2

n∑
i=1

n∑
j=1

wiwjσij − λ

(
n∑

i=1

wi µi − µp

)
− ψ

(
n∑

i=1

wi − 1

)
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In Matrix Form

s The Lagrangian L is

L =
1

2
www⊤ΣΣΣwww − λ

(
www⊤µµµ− µp

)
− ψ(www⊤111− 1).

s Note that ΣΣΣ is a symmetric matrix.

s The first-order conditions (FOC) with respect to www, λ, and ψ are

ΣΣΣwww − λµµµ− ψ111 = 000

www⊤µµµ = µp

www⊤111 = 1
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Solution of First FOC

s The first FOC gives the solution for the weight vector:

www∗ = ΣΣΣ−1
(
λµµµ+ ψ111

)
.

s But what are the values of the Lagrange multipliers λ and ψ?

s To solve for λ and ψ, substitute the optimal weight vector above into the last two
FOC’s,

µµµ⊤www∗ = µµµ⊤ΣΣΣ−1
(
λµµµ+ ψ111

)
= µp

111⊤www∗ = 111⊤ΣΣΣ−1
(
λµµµ+ ψ111

)
= 1
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Solution of Second and Third FOCs

s Let
a := µµµ⊤ΣΣΣ−1µµµ

b := µµµ⊤ΣΣΣ−1111

c := 111⊤ΣΣΣ−1111

s The last two FOCs can be written as[
a b
b c

] [
λ
ψ

]
=

[
µp
1

]
.

s Solving these two linear equations, we obtain

λ =
cµp − b

ac− b2
, ψ =

a− bµp
ac− b2

.
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Optimal Weight Vector and Portfolio Variance

s The optimal weight is then solved as

www∗ =
ΣΣΣ−1

((
cµp − b

)
µµµ+

(
a− bµp

)
111
)

ac− b2
.

s The portfolio variance is a quadratic function of the expected portfolio return µp:

σ2P := V
(
rp
)
= www∗⊤ΣΣΣwww∗ =

cµ2p − 2bµp + a

ac− b2

=
c

ac− b2
µ2p −

2b

ac− b2
µp +

a

ac− b2
.
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Global Minimum Variance Portfolio

s The global minimum variance portfolio is obtained by minimizing V
(
rp
)

with
respect to µp.

dV
(
rp
)

dµp
=

2c

ac− b2
µp −

2b

ac− b2
.

s The results of the first-order conditions are

µ⋆ =
b

c
, σ2⋆ =

1

c
, www⋆ =

ΣΣΣ−1111

c
.
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Example

w For the two assets, compute the inverse matrix

ΣΣΣ−1 =

[
0.0625 −0.01
−0.01 0.16

]−1

=
1

0.0625× 0.16− (−0.01)× (−0.01)

[
0.16 0.01
0.01 0.0625

]

=

[
16.16 1.01
1.01 6.31

]
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Three Scalars

w So the three scalars a, b, and c are

a = µµµ⊤ΣΣΣ−1µµµ

=
[
0.05 0.08

] [16.16 1.01
1.01 6.31

] [
0.05
0.08

]
= 0.088864;

b = µµµ⊤ΣΣΣ−1111

=
[
0.05 0.08

] [16.16 1.01
1.01 6.31

] [
1
1

]
= 1.4441

c = 111⊤ΣΣΣ−1111

= 24.49.
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Optimal Mean and Variance

w The global minimum variance portfolio

µ⋆ =
b

c
= 0.0590, σ2⋆ =

1

c
= 0.0408.

w So the minimum volatility is σ⋆ = 20.21%.

w The weight vector for w⋆ for the global minimum variance portfolio is

www⋆ =
ΣΣΣ−1111

c
=

1

24.49

[
16.16 1.01
1.01 6.31

] [
1
1

]
=

[
70.10%
29.90%

]
.

w So invest 70.1% of your money in Asset 1 and 29.9% in Asset 2 to earn 5.90%
expected return with a volatility of 20.21%.
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Efficient Frontier
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