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Setup

a Suppose the functions f and g1, g2, . . . , gm are continuously differentiable on an
open set D in Rn.

a Suppose that m < n and

g1(X) = g2(X) = · · · = gm(X) = 0 (1)

on a nonempty subset D1 of D, where X ∈ D1.
a If X0 ∈ D1, and if there is a neighborhood N of X0 such that

f(X) ≤ f(X0) (2)

for every X in N ∩D1, then X0 is a local maximum point of f subject to the
constraints (1).
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Extreme Points under Constraints

a Conversely, if (2) is replaced by

f(X) ≥ f(X0), (3)

then we say a local minimum point of f subject to the constraints (1).

a It is also called a local extreme point of f subject to (1).

a More briefly, we also speak of constrained local maximum, minimum, or extreme
points.

a If (2) or (3) holds for all X in D1, we omit “local.”

Christopher Ting Practical English II 4 July, 2025 Version 1.0 4/33



Introduction Extrema Subject to One Constraint Constrained Extrema of Quadratic Forms Proof of Theorem 1 Keywords

Critical Point

a We say that X0 = (x10, x20, . . . , xn0) is a critical point of a differentiable function
L = L(x1, x2, . . . , xn) if

Lxi(x10, x20, . . . , xn0) = 0, 1 ≤ i ≤ n.

a Therefore, every local extreme point of L is a critical point of L.

a On the other hand, a critical point of L is not necessarily a local extreme point of L.
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Constrained Solution

a Suppose that the system (1) of simultaneous equations can be solved for
x1, . . . , xm in terms of the xm+1, . . . , xn; thus

xj = hj(xm+1, . . . , xn), 1 ≤ j ≤ m. (4)

a Then a constrained extreme value of f is an unconstrained extreme value of

f(h1(xm+1, . . . , xn), . . . , hm(xm+1, . . . , xn), xm+1, . . . , xn). (5)

a However, it may be difficult or impossible to find explicit formulas for h1, h2, . . . , hm.

a Even if it is possible, the composite function (5) is almost always complicated.

a Is there a better way to to find constrained extrema?
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Theorem 1
Theorem 1: Lagrange Multipliers

a Suppose that n > m. Suppose X0 is a local extreme point of f subject to
g1(X) = g2(X) = · · · = gm(X) = 0 and the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1(X0)

∂xr1

∂g1(X0)

∂xr2
· · · ∂g1(X0)

∂xrm

∂g2(X0)

∂xr1

∂g2(X0)

∂xr2
· · · ∂gm(X0)

∂xrm
...

...
. . .

...
∂gm(X0)

∂xr1

∂gm(X0)

∂xr2
· · · ∂gm(X0)

∂xrm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
̸= 0 (6)

for at least one choice of r1 < r2 < · · · < rm.
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Theorem 1 (cont’d)

Theorem 1: Lagrange Multipliers

a Then there are constants λ1, λ2, . . . , λm called the Lagrange multipliers such that
X0 is a critical point of

f − λ1g1 − λ2g2 − · · · − λmgm.

a That is,
∂f(X0)

∂xi
− λ1

∂g1(X0)

∂xi
− λ2

∂g2(X0)

∂xi
− · · · − λm

∂gm(X0)

∂xi
= 0,

for 1 ≤ i ≤ n.
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Method of Lagrange Multipliers
(a) Find the critical points of

f − λ1g1 − λ2g2 − · · · − λmgm,

treating λ1, λ2, . . . , λm as unspecified constants.
(b) Find λ1, λ2, . . . , λm so that the critical points obtained in (a) satisfy the constraints.
(c) Determine which of the critical points are constrained extreme points of f .
(d) If a and b1, b2, . . . , bm are nonzero constants and c is an arbitrary constant, then the

local extreme points of f subject to g1 = g2 = · · · = gm = 0 are the same as the
local extreme points of af − c subject to

b1g1 = b2g2 = · · · = bmgm = 0.

(e) Therefore, to simplify computations, we can replace f − λ1g1 − λ2g2 − · · · − λmgm by
the Lagrangian

L := af − λ1b1g1 − λ2b2g2 − · · · − λmbmgm − c.

Christopher Ting Practical English II 4 July, 2025 Version 1.0 9/33



Introduction Extrema Subject to One Constraint Constrained Extrema of Quadratic Forms Proof of Theorem 1 Keywords

Theorem 2

Theorem 2: A Special Case for m = 1 Constraint

b Suppose that n > 1 and that X0 is a local extreme point of f subject to g(X) = 0.

b We also assume that the partial derivative gxr(X0) ̸= 0 for some r ∈ {1, 2, . . . , n}.

b Then there is a constant λ such that

fxi(X0)− λgxi(X0) = 0, for 1 ≤ i ≤ n. (7)

b In other words, X0 is a critical point of the Lagrangian f − λg.
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Proof of Theorem 2

b Without loss of generality, let r = 1. Denote

U = (x2, x3, . . . xn) and U0 = (x20, x30, . . . xn0).

b Since gx1(X0) ̸= 0, here is a unique continuously differentiable function h = h(U)
defined on a neighborhood N ⊂ Rn−1 of U0, such that

(
h(U),U

)
∈ D for all U ∈ N ,

h(U0) = x10, and
g(h(U),U) = 0, U ∈ N. (8)

b Now define
λ =

fx1(X0)

gx1(X0)
, (9)

which is permissible, since gx1(X0) ̸= 0.
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Proof of Theorem 2 (cont’d)

b Differentiating (8) with respect to xi yields, for i = 2, 3, . . . n,

∂g(h(U),U)

∂xi
+

∂g(h(U),U)

∂x1

∂h(U)

∂xi
= 0, U ∈ N. (10)

b Also,
∂f(h(U),U))

∂xi
=

∂f(h(U),U)

∂xi
+

∂f(h(U),U)

∂x1

∂h(U)

∂xi
, U ∈ N. (11)

b Since
(
h(U0),U0

)
= X0, (10) implies that

∂g(X0)

∂xi
+

∂g(X0)

∂x1

∂h(U0)

∂xi
= 0. (12)
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Proof of Theorem 2 (cont’d)

b If X0 is a local extreme point of f subject to g(X) = 0, then U0 is an
unconstrained local extreme point of f

(
h(U),U

)
.

b Therefore, (11) implies that

∂f(X0)

∂xi
+

∂f(X0)

∂x1

∂h(U0)

∂xi
= 0. (13)

b Recall that a linear homogeneous system[
a b
c d

] [
u
v

]
=

[
0
0

]
(14)

has a nontrivial solution if and only if
∣∣∣∣ a b
c d

∣∣∣∣ = 0.
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Proof of Theorem 2 (cont’d)

b (12) and (13) imply that∣∣∣∣∣∣∣∣∣
∂f(X0)

∂xi

∂f(X0)

∂x1

∂g(X0)

∂xi

∂g(X0)

∂x1

∣∣∣∣∣∣∣∣∣ = 0, so

∣∣∣∣∣∣∣∣∣
∂f(X0)

∂xi

∂g(X0)

∂xi

∂f(X0)

∂x1

∂g(X0)

∂x1

∣∣∣∣∣∣∣∣∣ = 0,

since the determinant of a matrix and that of its transpose are equal.

b Therefore, the system


∂f(X0)

∂xi

∂g(X0)

∂xi

∂f(X0)

∂x1

∂g(X0)

∂x1


[
u
v

]
=

[
0
0

]
has a nontrivial

solution.
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Proof of Theorem 2 (cont’d)

b Since gx1(X0) ̸= 0, u must be nonzero in a nontrivial solution.
b Hence, we may assume that u = 1, so

∂f(X0)

∂xi

∂g(X0)

∂xi

∂f(X0)

∂x1

∂g(X0)

∂x1


[
1
v

]
=

[
0
0

]
. (15)

b In particular
∂f(X0)

∂x1
+ v

∂g(X0)

∂x1
= 0, so − v =

fx1(X0)

gx1(X0)
.
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Proof of Theorem 2 (cont’d)

b Now (9) implies that −v = λ, and (15) becomes
∂f(X0)

∂xi

∂g(X0)

∂xi

∂f(X0)

∂x1

∂g(X0)

∂x1


[

1
−λ

]
=

[
0
0

]
.

b Computing the topmost entry of the vector on the left yields (7).
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Example 1

b Find the extreme values of
n∑

i=1

xi subject to
n∑

i=1

x2i = 1.

b Solution: Let L =

n∑
i=1

xi −
λ

2

n∑
i=1

x2i .

b Then Lxi = 1− λxi, so xi0 =
1

λ
, 1 ≤ i ≤ n.

b Hence
n∑

i=1

x2i0 = n/λ2, implying λ = ±
√
n and

(x10, x20, . . . , xn0) = ±
(

1√
n
,

1√
n
, . . . ,

1√
n

)
.

b Therefore, the constrained maximum is
√
n and the constrained minimum is

−
√
n.
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Example 2

b Show that if
1

p
+

1

q
= 1, p > 0, and q > 0, (16)

then x1/py1/q ≤ x

p
+

y

q
, x, y ≥ 0.

b We first find the maximum of
f(x, y) = x1/py1/q

subject to
x

p
+

y

q
= σ, x ≥ 0, y ≥ 0, (17)

where σ is a fixed but arbitrary positive number.
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Example 2 (cont’d)

b Define the Lagrangian L = x1/py1/q − λ

(
x

p
+

y

q

)
.

b Then, Lx =
1

px
f(x, y)− λ

p
and Ly =

1

qy
f(x, y)− λ

q
.

b Setting both derivatives to zero, we find x0 = y0 = f(x0, y0)/λ.

b (16) and (17) suggest that x0 = y0 = σ.

b It follows that
f(x, y) ≤ f(σ, σ) = σ1/pσ1/q = σ =

x

p
+

y

q
.
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Eigenvalue and Eigenvector

b We write x′ =
[
x1 x2 · · · xn

]
.

b An eigenvalue of a n× n square matrix A is a number λ such that Ax = λx,
equivalently

(A− λI)x = 0.

b This characteristic equation has a solution x ̸= 0 known as the eigenvector.
b From linear algebra, λ is an eigenvalue of A if and only if

det(A− λI) = 0.

b Suppose that A is symmetric, i.e., (aij = aji, 1 ≤ i, j ≤ n). In this case

det(A− λI) = (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn),

where λ1, λ2, . . . , λn are real numbers.
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Quadratic Form

b The function Q(x) =

n∑
i,j=1

aijxixj is a quadratic form.

b To find its maximum or minimum subject to
n∑

i=1

x2i = 1, we form the Lagrangian:

L = Q(x)− λ

n∑
i=1

x2i .

b Then Lxi = 2

n∑
j=1

aijxj − 2λxi = 0, 1 ≤ i ≤ n. Setting the equation to 0, we obtain

n∑
j=1

aijxj0 = λxi0, 1 ≤ i ≤ n.
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Connection to Eigenvector

b Therefore x′
0 =

[
x1 x2 · · · xn

]
0

is a constrained critical point of the function

Q(x) subject to
n∑

i=1

x2i = 1 if and only if Ax0 = λx0 for some λ.

b If Ax0 = x0 and
n∑

i=1

x2i0 = 1, then

Q(x0) =

n∑
i=1

 n∑
j=1

aijxj0

xi0 =

n∑
i=1

(λxi0)xi0 = λ

n∑
i=1

x2i0 = λ.

b Therefore, the largest and smallest eigenvalues of A are the maximum and

minimum values of Q subject to
n∑

i=1

x2i = 1.
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Step 1

w For convenience, let 1 ≤ ℓ ≤ m and suppose the determinant (6) is non-zerro.

w Denote U = (xm+1, xm+2, . . . xn) and U0 = (xm+1,0, xm+2,0, . . . xn0).

w In view of (6), there are unique continuously differentiable functions hℓ = hℓ(U)
defined on a neighborhood N of U, such that(

h1(U), h2(U), . . . , hm(U),U
)
∈ D, for all U ∈ N,

(h1(U0), h2(U0), . . . , hm(U0),U0) = X0, (18)

and
gℓ
(
h1(U), h2(U), . . . , hm(U),U

)
= 0, U ∈ N, 1 ≤ ℓ ≤ m. (19)
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Step 2

w Again from (6), we can consider the system of equations

∂g1(X0)

∂x1

∂g1(X0)

∂x2
· · · ∂g1(X0)

∂xm

∂g2(X0)

∂x1

∂g2(X0)

∂x2
· · · ∂g2(X0)

∂xm
...

...
. . .

...
∂gm(X0)

∂x1

∂gm(X0)

∂x2
· · · ∂gm(X0)

∂xm




λ1

λ2
...

λm

 =


fx1(X0)
fx2(X0)

...
fxm(X0)

 . (20)

w It has a unique solution, implying that, for 1 ≤ i ≤ m,
∂f(X0)

∂xi
− λ1

∂g1(X0)

∂xi
− λ2

∂g2(X0)

∂xi
− · · · − λm

∂gm(X0)

∂xi
= 0. (21)
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Step 3

w For m+ 1 ≤ i ≤ n, differentiating (19) with respect to xi and recalling (18) yields,

∂gℓ(X0)

∂xi
+

m∑
j=1

∂gℓ(X0)

∂xj

∂hj(X0)

∂xi
= 0, 1 ≤ ℓ ≤ m.

w If X0 is a local extreme point f subject to g1(X) = g2(X) = · · · = gm(X) = 0, then
U0 is an unconstrained local extreme point of f

(
h1(U), h2(U), . . . hm(U),U

)
.

w Therefore,
∂f(X0)

∂xi
+

m∑
j=1

∂f(X0)

∂xj

∂hj(X0)

∂xi
= 0.
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Step 4

w The last two equations imply that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f(X0)

∂xi

∂f(X0)

∂x1

∂f(X0)

∂x2
· · · ∂f(X0)

∂xm

∂g1(X0)

∂xi

∂g1(X0)

∂x1

∂g1(X0)

∂x2
· · · ∂g1(X0)

∂xm

∂g2(X0)

∂xi

∂g2(X0)

∂x1

∂g2(X0)

∂x2
· · · ∂g2(X0)

∂xm
...

...
...

. . .
...

∂gm(X0)

∂xi

∂gm(X0)

∂x1

∂gm(X0)

∂x2
· · · ∂gm(X0)

∂xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.
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Step 5

w So the determinant of the transposed matrix is also∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f(X0)

∂xi

∂g1(X0)

∂xi

∂g2(X0)

∂xi
. . .

∂gm(X0)

∂xi

∂f(X0)

∂x1

∂g1(X0)

∂x1

∂g2(X0)

∂x1
. . .

∂gm(X0)

∂x1

∂f(X0)

∂x2

∂g1(X0)

∂x2

∂g2(X0)

∂x2
. . .

∂gm(X0)

∂x2
...

...
...

. . .
...

∂f(X0)

∂xm

∂g1(X0)

∂xm

∂g2(X0)

∂xm
. . .

∂gm(X0)

∂xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.
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Step 6

w Therefore, there are constant c0, c1, . . . , cm, not all zero, such that

∂f(X0)

∂xi

∂g1(X0)

∂xi

∂g2(X0)

∂xi
. . .

∂gm(X0)

∂xi

∂f(X0)

∂x1

∂g1(X0)

∂x1

∂g2(X0)

∂x1
. . .

∂gm(X0)

∂x1

∂f(X0)

∂x2

∂g1(X0)

∂x2

∂g2(X0)

∂x2
. . .

∂gm(X0)

∂x2
...

...
...

. . .
...

∂f(X0)

∂xm

∂g1(X0)

∂xm

∂g2(X0)

∂xm
. . .

∂gm(X0)

∂xm




c0
c1
c3
...
cm

 =


0
0
0
...
0

 . (22)
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Step 7

w If c0 = 0, then

∂g1(X0)

∂x1

∂g1(X0)

∂x2
· · · ∂g1(X0)

∂xm

∂g2(X0)

∂x1

∂g2(X0)

∂x2
· · · ∂g2(X0)

∂xm
...

...
. . .

...
∂gm(X0)

∂x1

∂gm(X0)

∂x2
· · · ∂gm(X0)

∂xm




c1
c2
...
cm

 =


0
0
...
0

 .

w Since the dxdeterminant is non-zero, it must be that c1 = c2 = · · · = cm = 0.
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Step 8

w Hence, we may assume that c0 = 1 in a nontrivial solution of (22). Therefore,

∂f(X0)

∂xi

∂g1(X0)

∂xi

∂g2(X0)

∂xi
. . .

∂gm(X0)

∂xi

∂f(X0)

∂x1

∂g1(X0)

∂x1

∂g2(X0)

∂x1
. . .

∂gm(X0)

∂x1

∂f(X0)

∂x2

∂g1(X0)

∂x2

∂g2(X0)

∂x2
. . .

∂gm(X0)

∂x2
...

...
...

. . .
...

∂f(X0)

∂xm

∂g1(X0)

∂xm

∂g2(X0)

∂xm
. . .

∂gm(X0)

∂xm




1
c1
c2
...
cm

 =


0
0
0
...
0

 . (23)
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Step 9

w It implies that

∂g1(X0)

∂x1

∂g1(X0)

∂x2
· · · ∂g1(X0)

∂xm

∂g2(X0)

∂x1

∂g2(X0)

∂x2
· · · ∂g2(X0)

∂xm
...

...
. . .

...
∂gm(X0)

∂x1

∂gm(X0)

∂x2
· · · ∂gm(X0)

∂xm




−c1
−c2

...
−cm

 =


fx1(X0)
fx2(X0)

...
fxm(X0)

 .
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Step 10

w Since (22) has only one solution, implying that cj = −λ, 1 ≤ j ≤ n. So (23) becomes

∂f(X0)

∂xi

∂g1(X0)

∂xi

∂g2(X0)

∂xi
. . .

∂gm(X0)

∂xi

∂f(X0)

∂x1

∂g1(X0)

∂x1

∂g2(X0)

∂x1
. . .

∂gm(X0)

∂x1

∂f(X0)

∂x2

∂g1(X0)

∂x2

∂g2(X0)

∂x2
. . .

∂gm(X0)

∂x2
...

...
...

. . .
...

∂f(X0)

∂xm

∂g1(X0)

∂xm

∂g2(X0)

∂xm
. . .

∂gm(X0)

∂xm




1

−λ1

−λ2
...

−λm

 =


0
0
0
...
0

 .

w Computing the topmost entry of the vector on the left yields (21), which completes
the proof.
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local maximum point of f subject to the constraints, 3
local minimum point of f subject to the constraints, 4
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nontrivial solution, 13–15
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partial derivative, 10
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system of equations, 24
transpose, 14
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unique solution, 24
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