Introduction Extrema Subject to One Constraint Constrained Extrema of Quadratic Forms Proof of Theorem 1
000

Keywords
00000000 0000000000 0000000000 (o]

Section 5
Method of Lagrange Multipliers

Christopher Ting

Hiroshima University

o2: cting@hiroshima-u.ac.jp
©: http://cting.x10host.com/
&: +81 082-424-6451

9: AR 131-1

Christopher Ting Practical English Il 4 July, 2025 Version 1.0 1/33


mailto:cting@hiroshima-u.ac.jp
http://cting.x10host.com/

Introduction Extrema Subject to One Constraint Constrained Extrema of Quadratic Forms Proof of Theorem 1 Keywords
90000000 0000000000 000 0000000000 (o]

Table of Contents

Introduction

Extrema Subject to One Constraint
Constrained Extrema of Quadratic Forms
Proof of Theorem 1

Keywords

Christopher Ting Practical English Il 4 July, 2025 Version 1.0 2/33



Introduction Extrema Subject to One Constraint Constrained Extrema of Quadratic Forms Proof of Theorem 1 Keywords
0e000000 0000000000 000 0000000000 (o]

Setup

2 Suppose the functions f and g1, g2, . . ., gm are continuously differentiable on an
open set D in R™.

7 Suppose that m < n and
91(X) = g2(X) = -+ = gm(X) =0 (1)

on a nonempty subset Dy of D, where X € D;.
D If Xo € Dy, and if there is a neighborhood N of X, such that

f(X) < f(Xo) )

for every X in N n Dy, then X, is a local maximum point of f subject to the
constraints (1).
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Extreme Points under Constraints

Z Conversely, if (2) is replaced by

then we say a (1).
Z ltis also called a of f subject to (1).

2 More briefly, we also speak of constrained local maximum, minimum, or extreme
points.

2 If (2) or (3) holds for all X in Dy, we omit “local.”
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Critical Point

Z We say that Xy = (10, Z20, - - - , Tno) is a critical point of a differentiable function
L= L(xy,z2,...,x,) if

in(xl()ax207 oo 7-%'710) = 07 1 S ? S n.

Z Therefore, every local extreme point of L is a critical point of L.

Z On the other hand, a critical point of L is not necessarily a local extreme point of L.
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Constrained Solution

2 Suppose that the system (1) of can be solved for
x1,-..., T, interms of the z,,11, ..., x,; thus
zj = hj(Tmt1,...,2n), 1<j<m. (4)
Z Thena of fis an of
Fhi(@maty s Tn)s oo s P (@1 - o oy )y Tt 1y -« -5 T (5)

Z However, it may be difficult or impossible to find explicit formulas for k1, ks, . . ., hum.
Z Even if it is possible, the (5) is almost always complicated.

2 |s there a better way to to find ?
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Theorem 1: Lagrange Multipliers

Z Suppose that n > m. Suppose X is a local extreme point of f subject to
91(X) = go(X) = - -

= gm(X) = 0 and the determinant

991(Xo)  9g1(Xo)
0xy, 0%y,

992(Xo)  992(Xo)
0xy, 0%y,

9gm(Xo)  0gm(Xo)
0xy, 0xy,

for at least one choice of r{ <7y < -+ < 1y

9g1(Xo)
oxy,,

99m(Xo)

oxy,,

agm(}(O)

oxy,,

70 (6)

v
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Theorem 1 (contd)

Theorem 1: Lagrange Multipliers

Z' Then there are constants A, \a, . .., A called the Lagrange multipliers such that
Xy is a critical point of

f=2Ag1 — X292 — - — AmGm-
Z Thatis,
ami 1 8$@ 2 8CI3Z m aml )
forl <i<n.
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Method of Lagrange Multipliers
B Find the of
f=2g1 — Aag2 — - — Amgm,

treating A1, Ao, ..., A\, @s unspecified constants.
@ Find Aq, Ao, ..., A\, so that the critical points obtained in (a) satisfy the constraints.

Determine which of the critical points are of f.
@ If « and by, b, ... ,b,, are nonzero constants and c is an arbitrary constant, then the
of f subjectto g1 = go = - - - = g, = 0 are the same as the
local extreme points of af — ¢ subject to
bigi = baga = -+ = bypgm = 0.
B Therefore, to simplify computations, we can replace f — A\1g1 — Aag2 — - -+ — A\pngm DY
the
L:=af — Abigi — A2baga — -+ — Apbmgm — c.

Christopher Tin Practical English Il 4 July, 2025 Version 1.0  9/33
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Theorem 2

Theorem 2: A Special Case for m = 1 Constraint

I Suppose that n > 1 and that X is a local extreme point of f subject to g(X) = 0.

1 We also assume that the partial derivative g, (Xo) # 0 forsome r € {1,2,...,n}.

[J Then there is a constant \ such that

fxi (Xo) = )\gzz (XO) = 0, for 1 <i<n.

I3 In other words, Xy is a critical point of the Lagrangian f — Ag.
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Proof of Theorem 2
1 Without loss of generality, let » = 1. Denote

U= (ZCQ,I’g, 5o $n) and U, = (:L‘gg,.%’go, 50 .xno).

[ Since g, (Xo) # 0, here is a unique h = h(U)
defined on a N c R™! of Uy, such that (r(U),U) € Dforall U € N,
h(Uo) = 10, and

9(h(U),U) =0, UeN. (8)

[ Now define £ (Xo)

h=tm el 9
92, (X0) ©

which is permissible, since g, (Xo) # 0.
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Proof of Theorem 2 (contd)

[ Differentiating (8) with respect to x; yields, fori = 2.3,...n,

99(h(U),U) | 99(h(U), U) 0h(U)
al'i 8:1:1 6:@

=0, UeN. (10)

SR UMY 0F),T) | OF(U),T) OH(U)
8-%" - 8901 7 + 8901 ’ 8.% ’ Uen. (1 1)

3 Since (h(Up), Ug) = Xy, (10) implies that

99(Xo) n dg9(Xo) Oh(Uy)

Christopher Ting Practical English Il 4 July, 2025 Version 1.0 12/33
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Proof of Theorem 2 (contd)

I If X, is a local extreme point of f subject to g(X) = 0, then Uy is an
unconstrained local extreme point of f(h(U), U).

[ Therefore, (11) implies that

0f(Xo) | 0f(Xo) Oh(Up)
81‘@ + 61‘1 6.1‘1 =0 (13)

1 Recall that a linear homogeneous system
a b U 0
2 al[t]-10] "
b
d

has a nontrivial solution if and only if ’ =0.

Christopher Tin Practical English Il 4 July, 2025 Version 1.0 13/33
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Proof of Theorem 2 (contd)

7 (12) and (13) imply that

0f(Xo) 0f(Xo) 0f(Xo) 9g(Xo)
=0, so =0,
99(Xo) 9g9(Xo) 0f(Xo) 99(Xo)
8%1' 81‘1 8:751 Bxl
since the of a matrix and that of its are equal.
0f(Xo) 09(Xo)
[ Therefore, the system [ } = { 0 ] has a
0f(Xo) 99(Xo) | L°
61’1 al'l

Christopher Ting Practical English Il 4 July, 2025 Version 1.0 14/33
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Proof of Theorem 2 (contd)

[ Since g, (Xo) # 0, u must be nonzero in a
] Hence, we may assume that v = 1, so

df(Xo) 99(Xo)

ox; 0x; |: 1 :| |:
of(Xo) 9g(Xo) Y 0
0z1 0x1
1 In particular
0f (Xo) +v8g(X0) =0, SO —v="—.
ox1 0y

Christopher Ting Practical English Il
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Proof of Theorem 2 (contd)

[J Now (9) implies that —v = A, and (15) becomes

df(Xo) 99(Xo)

SN I R
0f(Xo) dg(Xe) | L 01
8331 8:131

1 Computing the topmost entry of the vector on the left yields (7).
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Example 1

M3 Find the extreme values of » _ z; subjectto Y a7 =1.
=il =il

) n A n
1 Solution: Let L = le -3 fo
=1 =il

1
1 Then Ly, =1— Az, SO z0=—, 1<i<n.

>~

n
3 Hence ) 3 = n/)\?, implying A = +/n and
=1
1 1 1
.. =x|—,—,...,— | .
($10,$20, aan) (\/ﬁa \/ﬁ’ ) \/ﬁ)
IJ Therefore, the constrained maximum is 1/n and the constrained minimum is

—J/n.
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Example 2

1 Show that if L
-—+-=1,p>0,and ¢ > 0, (16)
p q

thenz'/Py/1 <21 ¥ 2y >0.
b q

[ We first find the maximum of
f(z,y) = z'/Pyt/e

subject to

Ti¥%—6 220, y>o0, (17)
D q

where ¢ is a fixed but arbitrary positive number.
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Example 2 (contd)

1 Define the I = xl/pyl/q _\ (9” i y)
b q

'._—l Then, La: = — x, - — and L = — x’ — =,
G e v =gy =4

[ Setting both derivatives to zero, we find zo = yo = f(z0,y0)/\.
7 (16) and (17) suggest that 2o = yo = o.

[ |t follows that

f(z,y) < f(o,0) — gl/Pglla — 5 = f+y_
b q

Ol
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Eigenvalue and Eigenvector

1 We write x’ = [3:1 Tg - xn] .
1 An ofanxn A is a number A such that Ax = \x,
equivalently
(A —-X)x=0.

[ This has a solution x # 0 known as the
[J From linear algebra, A is an of A if and only if

det(A — AI) = 0.
[ Suppose that A is ,i.e., (aij = aj;,1 < 14,5 <n). Inthis case

det(A = AI) = (=1)"(A = A1) (A= A2) - - (A= Ap),

where A\, Ao, ..., A\, are real numbers.

Christopher Ting Practical English Il 4 July, 2025 Version 1.0 20/33
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Quadratic Form

3 The function Q(x) = Z a;jrix; 1S a
i =1

n
™3 To find its maximum or minimum subject to ) ~ z7 = 1, we form the
=1

L=Qkx)— )\Zazf
i=1

1 Then L, =2 Z ajjr; — 2 x; =0, 1 <4 < n. Setting the equation to 0, we obtain
j=1
ZaijSUj() = )\.CUi(), 1 S 7 S n.
j=1
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Connection to Eigenvector

3 Therefore x = [z1 @ - azn]o is a of the function
n

Q(x) subjectto > " a7 = 1 if and only if Axy = Ax, for some \.
i=1

n
[ If Axg = x0 and Zx%o =1, then

g=ll
Q(xp) = Z Zaijxjo Tip = Z(Aazio)xio = )\ZLE?O =\
=1 \j=1 i=1 i=1
[ Therefore, the largest and smallest of A are the maximum and

n
minimum values of Q subjectto » a7 = 1.
=1

Christopher Tin Practical English Il 4 July, 2025 Version 1.0  22/33
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Step 1

¥ For convenience, let 1 < ¢ < m and suppose the (6) is non-zerro.
? Denote U = (211, Tmi2; - - Zn) and Ug = (Zmi1,0, Zmi2,0, - - - Tno)-

7 In view of (6), there are unique hy = he(U)
defined on a N of U, such that

(h1(U), ho(U),..., hy(U),U) € D, forall U e N,

(h1(Ug), h2(Uop), ..., hm(Up), Ug) = Xo, (18)

and
gﬂ(hl(U)vh2(U)7ahm(U)’U) =0, UeN, 1</L<m. (19)

Christopher Ting Practical English Il 4 July, 2025 Version 1.0  23/33
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Step 2
7 Again from (6), we can consider the
[ 091(Xo)  991(Xo) 991(Xo) T
o0z Oxo CH
A 2 (X
0p(X) OpX)  m(Xo) || 3] [ G0
a1 O O Sl =17 (20)
09(Xo)  0gm(Xo) 0gm(Xo) | L Am Jan (Xo)
o0z Oxo CH
, implying that, for 1 < i <m,
of(Xo) | 991(Xo) | 092(Xo) | Ogm(Xo) _

Christopher Ting

Practical English Il
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Step 3

¥ Form + 1 <1 < n, differentiating (19) with respect to z; and recalling (18) yields,

99¢(X0)  ~= 9g¢(Xo) Oh;(Xo)
= </ < .
ox; + Z aﬂfj 0x; 0, Isé=m

7 IfXgisa f subject to ¢1(X) = g2(X) = - - - = g,n(X) = 0, then
U is an of f(h1(U), ho(U

>
N
&
EZ

¢ Therefore,
= 0.

0f(Xo) | ~= 0f(Xo) Oh;(Xo)
6% +Z 6.%']' j?xz

Christopher Ting Practical English Il 4 July, 2025 Version 1.0 25/33



Step 4

{ The last two equations imply that

Christopher Ting

dg91(Xo)

0f(Xo) 0f(Xo) 0f(Xo)
ox; ox1 0xo
091(Xo)  091(Xo)  9g1(Xo)
81’1' (91’1 (91’2
092(Xo)  992(Xo)  9g2(Xo)
8.%’ 8.%’1 81'2
Igm(Xo)  9gm(Xo) Igm(Xo)
81’1' (91’1 (91‘2

Practical English Il
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df(Xo)

0T,

0Ty,
9g2(Xo) | =0-

0xm
O9m (XO)

0T,
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? So the determinant of the transposed matrix is also

Christopher Ting

Extrema Subject to One Constraint

000

Step 5

9f(Xo) 991(Xo) Iga(Xo)

0f(Xo) 091(Xo) 0g92(Xp)
&rl 85131 8:1:1
0f(Xo) 091(Xo) 9g2(Xo)

Oxo 0xo Oz

0f(Xo) 9g1(Xo) Dga(Xo)

Practical English Il

Constrained Extrema of Quadratic Forms

agm(XO)

GHJZ'

agm (XO)

8:61

8gm(X0)

0xo

89m (XO)

Oz,

Proof of Theorem 1 Keywords
0000e00000 (o]
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Step 6
7 Therefore, there are constant c¢g, ¢y, . .
9f(Xo) 091(Xo) 9g2(Xo) Agm (Xo)
0f(Xo) 0g1(Xo) 9g92(Xo) gm(Xo)
o or 0xq 01
9f(Xo) 091(Xo) Jg2(Xo) 99m(Xo)
0xo 0xo 0y 0o
0f(Xo) 0g1(Xo) 9g92(Xo) gm(Xo)
0T, 0T, 0Tm s,

Christopher Ting
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., cm, not all zero, such that
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Step 7
T If ¢g = 0, then
[ 091(Xo)  9g1(Xo) 9g1(Xo) ]
or1 0xo 0T,
0
0p(X0)  0p(X0) | 9p(Xo) || 0
ox1 0x9 0T =
89 (Xo)  Ogm(Xo) dgm(Xo) | L €m v
or1 0xo 0T,
¥ Since the dxdeterminant is non-zero, it must be that ¢c; = ¢y = --- = ¢,, = 0.

Christopher Ting
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¥ Hence, we may assume that ¢y = 1 in a nontrivial solution of (22). Therefore,

Christopher Ting

Step 8
0f(Xo) 0g1(Xo) 9g2(Xo) Agm(Xo)
ox; ox; ox; Oz;
0f(Xo) 091(Xo) 0g2(Xo) dgm(Xo)
ox1 ox1 ox1 0y
0f(Xo) 091(Xo) 0g2(Xo) dgm(Xo)
AR Oxa 0xa 0z
0f(Xo) 0991(Xo) 0g2(Xo) dgm(Xo)
0T, 0T, 0T, i

Practical English
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Step 9

7 It implies that

Cont) ) onKo) |
0y Oxa 0xm

_ - X,

892(X0) 892(X0) 892(X0) Gl f ( 0)

=~ 7 —CQ f$2(XO)

Oy 0z2 0T, _ — _

Ogm(X0) Ogn(Xo)  Ogm(Xo) | L7om ] L fen(X0)

Oy Oz Oy,
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7 Since (22) has only one solution, implying that ¢; = —\, 1 < j < n. So (23) becomes

Step 10
[ 0f(Xo) 991(Xo) 992(Xo) 9gm(Xo)
0f(Xo) 9g1(Xo) 992(Xo) 99m(Xo)
o0x1 o0x1 01 o Oy
0f(Xo) 9g1(Xo) 992(Xo) 9gm(Xo)
0xo 0xo 0xa o Oz
of (Xo) 891(.X0) 692(X0) 39m-(X0)
Oy Oz, 0T o 0Ty,

7 Computing the topmost entry of the vector on the left yields (21), which completes

the proof.
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local extreme points, 9
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neighborhood, 3, 11, 23

nontrivial solution, 13-15

open set, 3

partial derivative, 10

quadratic form, 21

simultaneous equations, 6

square matrix, 20

subset, 3

symmetric, 20

system of equations, 24

transpose, 14

transposed matrix, 27

unconstrained extreme value, 6
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4 July, 2025 Version 1.0  33/33



	Introduction
	Introduction

	Extrema Subject to One Constraint
	

	Constrained Extrema of Quadratic Forms
	

	Proof of Theorem 1
	

	Keywords
	


