

Section 5

Method of Lagrange Multipliers

Christopher Ting

Hiroshima University

✉: cting@hiroshima-u.ac.jp

☺: <http://cting.x10host.com/>

☎: +81 082-424-6451

🏢: A1棟 131-1

Table of Contents

1 Introduction

2 Extrema Subject to One Constraint

3 Constrained Extrema of Quadratic Forms

4 Proof of Theorem 1

5 Keywords

Setup

- ∅ Suppose the functions f and g_1, g_2, \dots, g_m are **continuously differentiable** on an **open set** D in \mathbb{R}^n .
- ∅ Suppose that $m < n$ and

$$g_1(\mathbf{X}) = g_2(\mathbf{X}) = \dots = g_m(\mathbf{X}) = 0 \quad (1)$$

on a nonempty **subset** D_1 of D , where $\mathbf{X} \in D_1$.

- ∅ If $\mathbf{X}_0 \in D_1$, and if there is a **neighborhood** N of \mathbf{X}_0 such that

$$f(\mathbf{X}) \leq f(\mathbf{X}_0) \quad (2)$$

for every \mathbf{X} in $N \cap D_1$, then \mathbf{X}_0 is a **local maximum point of f subject to the constraints (1)**.

Extreme Points under Constraints

- Conversely, if (2) is replaced by

$$f(\mathbf{X}) \geq f(\mathbf{X}_0), \quad (3)$$

then we say a **local minimum point of f subject to the constraints (1)**.

- It is also called a **local extreme point** of f subject to (1).
- More briefly, we also speak of constrained local maximum, minimum, or extreme points.
- If (2) or (3) holds for all \mathbf{X} in D_1 , we omit “local.”

Critical Point

▮ We say that $\mathbf{X}_0 = (x_{10}, x_{20}, \dots, x_{n0})$ is a **critical point** of a **differentiable function** $L = L(x_1, x_2, \dots, x_n)$ if

$$L_{x_i}(x_{10}, x_{20}, \dots, x_{n0}) = 0, \quad 1 \leq i \leq n.$$

▮ Therefore, every **local extreme point** of L is a critical point of L .

▮ On the other hand, a **critical point** of L is not necessarily a local extreme point of L .

Constrained Solution

☞ Suppose that the system (1) of **simultaneous equations** can be solved for x_1, \dots, x_m in terms of the x_{m+1}, \dots, x_n ; thus

$$x_j = h_j(x_{m+1}, \dots, x_n), \quad 1 \leq j \leq m. \quad (4)$$

☞ Then a **constrained extreme value** of f is an **unconstrained extreme value** of

$$f(h_1(x_{m+1}, \dots, x_n), \dots, h_m(x_{m+1}, \dots, x_n), x_{m+1}, \dots, x_n). \quad (5)$$

☞ However, it may be difficult or impossible to find explicit formulas for h_1, h_2, \dots, h_m .
☞ Even if it is possible, the **composite function** (5) is almost always complicated.
☞ Is there a better way to find **constrained extrema**?

Theorem 1

Theorem 1: Lagrange Multipliers

∅ Suppose that $n > m$. Suppose \mathbf{X}_0 is a **local extreme point** of f subject to $g_1(\mathbf{X}) = g_2(\mathbf{X}) = \cdots = g_m(\mathbf{X}) = 0$ and the **determinant**

$$\begin{vmatrix} \frac{\partial g_1(\mathbf{X}_0)}{\partial x_{r_1}} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_{r_2}} & \cdots & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_{r_m}} \\ \frac{\partial g_2(\mathbf{X}_0)}{\partial x_{r_1}} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_{r_2}} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_{r_m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m(\mathbf{X}_0)}{\partial x_{r_1}} & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_{r_2}} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_{r_m}} \end{vmatrix} \neq 0 \quad (6)$$

for at least one choice of $r_1 < r_2 < \cdots < r_m$.

Theorem 1 (cont'd)

Theorem 1: Lagrange Multipliers

Then there are constants $\lambda_1, \lambda_2, \dots, \lambda_m$ called the **Lagrange multipliers** such that \mathbf{X}_0 is a **critical point** of

$$f - \lambda_1 g_1 - \lambda_2 g_2 - \dots - \lambda_m g_m.$$

That is,

$$\frac{\partial f(\mathbf{X}_0)}{\partial x_i} - \lambda_1 \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} - \lambda_2 \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} - \dots - \lambda_m \frac{\partial g_m(\mathbf{X}_0)}{\partial x_i} = 0,$$

for $1 \leq i \leq n$.

Method of Lagrange Multipliers

(a) Find the **critical points** of

$$f - \lambda_1 g_1 - \lambda_2 g_2 - \cdots - \lambda_m g_m,$$

treating $\lambda_1, \lambda_2, \dots, \lambda_m$ as unspecified constants.

(b) Find $\lambda_1, \lambda_2, \dots, \lambda_m$ so that the critical points obtained in (a) satisfy the constraints.

(c) Determine which of the critical points are **constrained extreme points** of f .

(d) If a and b_1, b_2, \dots, b_m are nonzero constants and c is an arbitrary constant, then the **local extreme points** of f subject to $g_1 = g_2 = \cdots = g_m = 0$ are the same as the local extreme points of $af - c$ subject to

$$b_1 g_1 = b_2 g_2 = \cdots = b_m g_m = 0.$$

(e) Therefore, to simplify computations, we can replace $f - \lambda_1 g_1 - \lambda_2 g_2 - \cdots - \lambda_m g_m$ by the **Lagrangian**

$$L := af - \lambda_1 b_1 g_1 - \lambda_2 b_2 g_2 - \cdots - \lambda_m b_m g_m - c.$$

Theorem 2

Theorem 2: A Special Case for $m = 1$ Constraint

- Suppose that $n > 1$ and that \mathbf{X}_0 is a **local extreme point** of f subject to $g(\mathbf{X}) = 0$.
- We also assume that the **partial derivative** $g_{x_r}(\mathbf{X}_0) \neq 0$ for some $r \in \{1, 2, \dots, n\}$.
- Then there is a constant λ such that

$$f_{x_i}(\mathbf{X}_0) - \lambda g_{x_i}(\mathbf{X}_0) = 0, \quad \text{for } 1 \leq i \leq n. \quad (7)$$

- In other words, \mathbf{X}_0 is a **critical point** of the **Lagrangian** $f - \lambda g$.

Proof of Theorem 2

□ Without loss of generality, let $r = 1$. Denote

$$\mathbf{U} = (x_2, x_3, \dots, x_n) \text{ and } \mathbf{U}_0 = (x_{20}, x_{30}, \dots, x_{n0}).$$

□ Since $g_{x_1}(\mathbf{X}_0) \neq 0$, there is a unique **continuously differentiable function** $h = h(\mathbf{U})$ defined on a **neighborhood** $N \subset \mathbb{R}^{n-1}$ of \mathbf{U}_0 , such that $(h(\mathbf{U}), \mathbf{U}) \in D$ for all $\mathbf{U} \in N$, $h(\mathbf{U}_0) = x_{10}$, and

$$g(h(\mathbf{U}), \mathbf{U}) = 0, \quad \mathbf{U} \in N. \quad (8)$$

□ Now define

$$\lambda = \frac{f_{x_1}(\mathbf{X}_0)}{g_{x_1}(\mathbf{X}_0)}, \quad (9)$$

which is permissible, since $g_{x_1}(\mathbf{X}_0) \neq 0$.

Proof of Theorem 2 (cont'd)

□ Differentiating (8) with respect to x_i yields, for $i = 2, 3, \dots, n$,

$$\frac{\partial g(h(\mathbf{U}), \mathbf{U})}{\partial x_i} + \frac{\partial g(h(\mathbf{U}), \mathbf{U})}{\partial x_1} \frac{\partial h(\mathbf{U})}{\partial x_i} = 0, \quad \mathbf{U} \in N. \quad (10)$$

□ Also,

$$\frac{\partial f(h(\mathbf{U}), \mathbf{U}))}{\partial x_i} = \frac{\partial f(h(\mathbf{U}), \mathbf{U})}{\partial x_i} + \frac{\partial f(h(\mathbf{U}), \mathbf{U})}{\partial x_1} \frac{\partial h(\mathbf{U})}{\partial x_i}, \quad \mathbf{U} \in N. \quad (11)$$

□ Since $(h(\mathbf{U}_0), \mathbf{U}_0) = \mathbf{X}_0$, (10) implies that

$$\frac{\partial g(\mathbf{X}_0)}{\partial x_i} + \frac{\partial g(\mathbf{X}_0)}{\partial x_1} \frac{\partial h(\mathbf{U}_0)}{\partial x_i} = 0. \quad (12)$$

Proof of Theorem 2 (cont'd)

- If \mathbf{X}_0 is a **local extreme point** of f subject to $g(\mathbf{X}) = 0$, then \mathbf{U}_0 is an **unconstrained local extreme point** of $f(h(\mathbf{U}), \mathbf{U})$.
- Therefore, (11) implies that

$$\frac{\partial f(\mathbf{X}_0)}{\partial x_i} + \frac{\partial f(\mathbf{X}_0)}{\partial x_1} \frac{\partial h(\mathbf{U}_0)}{\partial x_i} = 0. \quad (13)$$

- Recall that a **linear homogeneous system**

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad (14)$$

has a **nontrivial solution** if and only if $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 0$.

Proof of Theorem 2 (cont'd)

□ (12) and (13) imply that

$$\begin{vmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial f(\mathbf{X}_0)}{\partial x_1} \\ \frac{\partial g(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g(\mathbf{X}_0)}{\partial x_1} \end{vmatrix} = 0, \text{ so } \begin{vmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g(\mathbf{X}_0)}{\partial x_1} \end{vmatrix} = 0,$$

since the **determinant** of a matrix and that of its **transpose** are equal.

□ Therefore, the system

$$\begin{bmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g(\mathbf{X}_0)}{\partial x_1} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 has a **nontrivial solution**.

Proof of Theorem 2 (cont'd)

- Since $g_{x_1}(\mathbf{X}_0) \neq 0$, u must be nonzero in a **nontrivial solution**.
- Hence, we may assume that $u = 1$, so

$$\begin{bmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g(\mathbf{X}_0)}{\partial x_1} \end{bmatrix} \begin{bmatrix} 1 \\ v \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \quad (15)$$

- In particular

$$\frac{\partial f(\mathbf{X}_0)}{\partial x_1} + v \frac{\partial g(\mathbf{X}_0)}{\partial x_1} = 0, \quad \text{so} \quad -v = \frac{f_{x_1}(\mathbf{X}_0)}{g_{x_1}(\mathbf{X}_0)}.$$

Proof of Theorem 2 (cont'd)

- Now (9) implies that $-v = \lambda$, and (15) becomes

$$\begin{bmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g(\mathbf{X}_0)}{\partial x_1} \end{bmatrix} \begin{bmatrix} 1 \\ -\lambda \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

- Computing the topmost entry of the vector on the left yields (7).

Example 1

- Find the **extreme values** of $\sum_{i=1}^n x_i$ subject to $\sum_{i=1}^n x_i^2 = 1$.
- Solution: Let $L = \sum_{i=1}^n x_i - \frac{\lambda}{2} \sum_{i=1}^n x_i^2$.
- Then $L_{x_i} = 1 - \lambda x_i$, so $x_{i0} = \frac{1}{\lambda}$, $1 \leq i \leq n$.
- Hence $\sum_{i=1}^n x_{i0}^2 = n/\lambda^2$, implying $\lambda = \pm\sqrt{n}$ and
$$(x_{10}, x_{20}, \dots, x_{n0}) = \pm \left(\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}} \right).$$
- Therefore, the **constrained maximum** is \sqrt{n} and the **constrained minimum** is $-\sqrt{n}$.

Example 2

□ Show that if

$$\frac{1}{p} + \frac{1}{q} = 1, p > 0, \text{ and } q > 0, \quad (16)$$

then $x^{1/p}y^{1/q} \leq \frac{x}{p} + \frac{y}{q}, \quad x, y \geq 0.$

□ We first find the maximum of

$$f(x, y) = x^{1/p}y^{1/q}$$

subject to

$$\frac{x}{p} + \frac{y}{q} = \sigma, \quad x \geq 0, \quad y \geq 0, \quad (17)$$

where σ is a fixed but arbitrary positive number.

Example 2 (cont'd)

- Define the **Lagrangian** $L = x^{1/p}y^{1/q} - \lambda \left(\frac{x}{p} + \frac{y}{q} \right)$.
- Then, $L_x = \frac{1}{px}f(x, y) - \frac{\lambda}{p}$ and $L_y = \frac{1}{qy}f(x, y) - \frac{\lambda}{q}$.
- Setting both derivatives to zero, we find $x_0 = y_0 = f(x_0, y_0)/\lambda$.
- (16) and (17) suggest that $x_0 = y_0 = \sigma$.
- It follows that

$$f(x, y) \leq f(\sigma, \sigma) = \sigma^{1/p}\sigma^{1/q} = \sigma = \frac{x}{p} + \frac{y}{q}.$$

Eigenvalue and Eigenvector

- We write $\mathbf{x}' = [x_1 \ x_2 \ \cdots \ x_n]$.
- An **eigenvalue** of a $n \times n$ **square matrix** \mathbf{A} is a number λ such that $\mathbf{Ax} = \lambda\mathbf{x}$, equivalently

$$(\mathbf{A} - \lambda\mathbf{I})\mathbf{x} = \mathbf{0}.$$

- This **characteristic equation** has a solution $\mathbf{x} \neq \mathbf{0}$ known as the **eigenvector**.
- From linear algebra, λ is an **eigenvalue** of \mathbf{A} if and only if

$$\det(\mathbf{A} - \lambda\mathbf{I}) = 0.$$

- Suppose that \mathbf{A} is **symmetric**, i.e., $(a_{ij} = a_{ji}, 1 \leq i, j \leq n)$. In this case

$$\det(\mathbf{A} - \lambda\mathbf{I}) = (-1)^n(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n),$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are real numbers.

Quadratic Form

- The function $Q(\mathbf{x}) = \sum_{i,j=1}^n a_{ij}x_i x_j$ is a **quadratic form**.
- To find its maximum or minimum subject to $\sum_{i=1}^n x_i^2 = 1$, we form the **Lagrangian**:

$$L = Q(\mathbf{x}) - \lambda \sum_{i=1}^n x_i^2.$$

- Then $L_{x_i} = 2 \sum_{j=1}^n a_{ij}x_j - 2\lambda x_i = 0$, $1 \leq i \leq n$. Setting the equation to 0, we obtain

$$\sum_{j=1}^n a_{ij}x_{j0} = \lambda x_{i0}, \quad 1 \leq i \leq n.$$

Connection to Eigenvector

- Therefore $\mathbf{x}'_0 = [x_1 \ x_2 \ \cdots \ x_n]_0$ is a **constrained critical point** of the function $Q(\mathbf{x})$ subject to $\sum_{i=1}^n x_i^2 = 1$ if and only if $\mathbf{Ax}_0 = \lambda \mathbf{x}_0$ for some λ .

- If $\mathbf{Ax}_0 = \mathbf{x}_0$ and $\sum_{i=1}^n x_{i0}^2 = 1$, then

$$Q(\mathbf{x}_0) = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} x_{j0} \right) x_{i0} = \sum_{i=1}^n (\lambda x_{i0}) x_{i0} = \lambda \sum_{i=1}^n x_{i0}^2 = \lambda.$$

- Therefore, the largest and smallest **eigenvalues** of \mathbf{A} are the maximum and minimum values of Q subject to $\sum_{i=1}^n x_i^2 = 1$.

Step 1

- For convenience, let $1 \leq \ell \leq m$ and suppose the **determinant** (6) is non-zero.
- Denote $\mathbf{U} = (x_{m+1}, x_{m+2}, \dots, x_n)$ and $\mathbf{U}_0 = (x_{m+1,0}, x_{m+2,0}, \dots, x_{n,0})$.
- In view of (6), there are unique **continuously differentiable functions** $h_\ell = h_\ell(\mathbf{U})$ defined on a **neighborhood** N of \mathbf{U} , such that

$$(h_1(\mathbf{U}), h_2(\mathbf{U}), \dots, h_m(\mathbf{U}), \mathbf{U}) \in D, \text{ for all } \mathbf{U} \in N,$$

$$(h_1(\mathbf{U}_0), h_2(\mathbf{U}_0), \dots, h_m(\mathbf{U}_0), \mathbf{U}_0) = \mathbf{X}_0, \quad (18)$$

and

$$g_\ell(h_1(\mathbf{U}), h_2(\mathbf{U}), \dots, h_m(\mathbf{U}), \mathbf{U}) = 0, \quad \mathbf{U} \in N, \quad 1 \leq \ell \leq m. \quad (19)$$

Step 2

⌚ Again from (6), we can consider the **system of equations**

$$\begin{bmatrix} \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} \\ \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_m \end{bmatrix} = \begin{bmatrix} f_{x_1}(\mathbf{X}_0) \\ f_{x_2}(\mathbf{X}_0) \\ \vdots \\ f_{x_m}(\mathbf{X}_0) \end{bmatrix}. \quad (20)$$

⌚ It has a **unique solution**, implying that, for $1 \leq i \leq m$,

$$\frac{\partial f(\mathbf{X}_0)}{\partial x_i} - \lambda_1 \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} - \lambda_2 \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} - \dots - \lambda_m \frac{\partial g_m(\mathbf{X}_0)}{\partial x_i} = 0. \quad (21)$$

Step 3

∅ For $m + 1 \leq i \leq n$, differentiating (19) with respect to x_i and recalling (18) yields,

$$\frac{\partial g_\ell(\mathbf{X}_0)}{\partial x_i} + \sum_{j=1}^m \frac{\partial g_\ell(\mathbf{X}_0)}{\partial x_j} \frac{\partial h_j(\mathbf{X}_0)}{\partial x_i} = 0, \quad 1 \leq \ell \leq m.$$

∅ If \mathbf{X}_0 is a **local extreme point** f subject to $g_1(\mathbf{X}) = g_2(\mathbf{X}) = \dots = g_m(\mathbf{X}) = 0$, then \mathbf{U}_0 is an **unconstrained local extreme point** of $f(h_1(\mathbf{U}), h_2(\mathbf{U}), \dots, h_m(\mathbf{U}), \mathbf{U})$.

∅ Therefore,

$$\frac{\partial f(\mathbf{X}_0)}{\partial x_i} + \sum_{j=1}^m \frac{\partial f(\mathbf{X}_0)}{\partial x_j} \frac{\partial h_j(\mathbf{X}_0)}{\partial x_i} = 0.$$

Step 4

† The last two equations imply that

$$\begin{vmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial f(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial f(\mathbf{X}_0)}{\partial x_m} \\ \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} \\ \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{vmatrix} = 0.$$

Step 5

∴ So the **determinant** of the **transposed matrix** is also

$$\begin{vmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{vmatrix} = 0.$$

Step 6

Therefore, there are constant c_0, c_1, \dots, c_m , not all zero, such that

$$\begin{bmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_3 \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \quad (22)$$

Step 7

♀ If $c_0 = 0$, then

$$\begin{bmatrix} \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} \\ \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

♀ Since the $d \times d$ determinant is non-zero, it must be that $c_1 = c_2 = \dots = c_m = 0$.

Step 8

∴ Hence, we may assume that $c_0 = 1$ in a nontrivial solution of (22). Therefore,

$$\begin{bmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{bmatrix} \begin{bmatrix} 1 \\ c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \quad (23)$$

Step 9

♀ It implies that

$$\begin{bmatrix} \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} \\ \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} & \dots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{bmatrix} \begin{bmatrix} -c_1 \\ -c_2 \\ \vdots \\ -c_m \end{bmatrix} = \begin{bmatrix} f_{x_1}(\mathbf{X}_0) \\ f_{x_2}(\mathbf{X}_0) \\ \vdots \\ f_{x_m}(\mathbf{X}_0) \end{bmatrix}.$$

Step 10

Since (22) has only one solution, implying that $c_j = -\lambda, 1 \leq j \leq n$. So (23) becomes

$$\begin{bmatrix} \frac{\partial f(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_i} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_i} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_i} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_1} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_1} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_1} \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_2} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_2} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_1(\mathbf{X}_0)}{\partial x_m} & \frac{\partial g_2(\mathbf{X}_0)}{\partial x_m} & \cdots & \frac{\partial g_m(\mathbf{X}_0)}{\partial x_m} \end{bmatrix} \begin{bmatrix} 1 \\ -\lambda_1 \\ -\lambda_2 \\ \vdots \\ -\lambda_m \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

Computing the topmost entry of the vector on the left yields (21), which completes the proof.

characteristic equation, 20
composite function, 6
constrained critical point, 22
constrained extrema, 6
constrained extreme points, 9
constrained extreme value, 6
constrained maximum, 17
constrained minimum, 17
continuously differentiable, 3
continuously differentiable function, 11
continuously differentiable functions, 23
critical point, 5, 8, 10
critical points, 9
determinant, 7, 14, 23, 27
differentiable function, 5
eigenvalue, 20
eigenvalues, 22
eigenvector, 20
extreme values, 17
Lagrange multipliers, 8
Lagrangian, 9, 10, 19, 21

Keywords

linear homogeneous system, 13
local extreme point, 4, 5, 7, 10, 13, 25
local extreme points, 9
local maximum point of f subject to the constraints, 3
local minimum point of f subject to the constraints, 4
neighborhood, 3, 11, 23
nontrivial solution, 13–15
open set, 3
partial derivative, 10
quadratic form, 21
simultaneous equations, 6
square matrix, 20
subset, 3
symmetric, 20
system of equations, 24
transpose, 14
transposed matrix, 27
unconstrained extreme value, 6
unconstrained local extreme point, 13, 25
unique solution, 24