

Lesson 4

Integration

Christopher Ting

Hiroshima University

- ✉: cting@hiroshima-u.ac.jp
- ☺: <http://cting.x10host.com/>
- ☎: +81 082-424-6451
- 🏢: A1棟 131-1

June 27, 2025 Version 1.0

Table of Contents

1 Introduction

2 Definite Integral

3 Fundamental Theorem

4 Integration by Parts

5 Standard Normal

6 Derivation

7 Keywords

Inspiring Quote

Science is the Differential Calculus of the mind. Art the Integral Calculus; they may be beautiful when apart, but are greatest only when combined.

— **Ronald Ross**

Learning Outcomes

- ❑ Develop an intuitive understanding of differentiation versus integration.
- ❑ Describe definite integral as area under the curve.
- ❑ Apply the geometric sum in integration.
- ❑ Explain the fundamental theorem of calculus.
- ❑ Apply the integration technique based on the translation theorem.
- ❑ Apply the technique of integration by parts.
- ❑ Explain the heuristics of LATE.
- ❑ Understand how normal distribution can be derived from first principles.

Revision

Definition 1.1 (Antiderivative).

An **antiderivative** $F(x)$ of a function $f(x)$ is a function whose derivative is $f(x)$. In other words, $F'(x) = f(x)$.

Theorem 1.2 (Constant of Integration).

Suppose that $F(x)$ and $G(x)$ are antiderivatives of a function $f(x)$. Then $F(x)$ and $G(x)$ differ only by a *constant*. That is, $F(x) = G(x) + C$ for some constant C .

So, to find *all* antiderivatives of a function, it is necessary only to find *one* antiderivative and then add a generic constant to it.

Indefinite Integral

Definition 1.3 (Indefinite Integral).

The **indefinite integral** of a function $f(x)$ is denoted by

$$\int f(x) \, dx.$$

It represents the entire family of **antiderivatives** of $f(x)$.

- ☞ The large S-shaped symbol before $f(x)$ is called an **integral sign**.
- ☞ $\frac{d}{dx} \left(\int f(x) \, dx \right) = f(x).$
- ☞ For an antiderivative $F(x)$ of a function $f(x)$, the **infinitesimal** dF is given by

$dF = F'(x) \, dx = f(x) \, dx$, and so

$$F(x) = \int f(x) \, dx = \int dF.$$

Application: Gas Law

☞ Pressure P , volume V , and temperature T of a tank of gas:

$$\frac{dP}{P} + \frac{dV}{V} = \frac{dT}{T}$$

☞ Integrating both sides of the equation yields

$$\int \frac{dP}{P} + \int \frac{dV}{V} = \int \frac{dT}{T}$$

$$\ln P + \ln V = \ln T + C \quad (C \text{ is a constant})$$

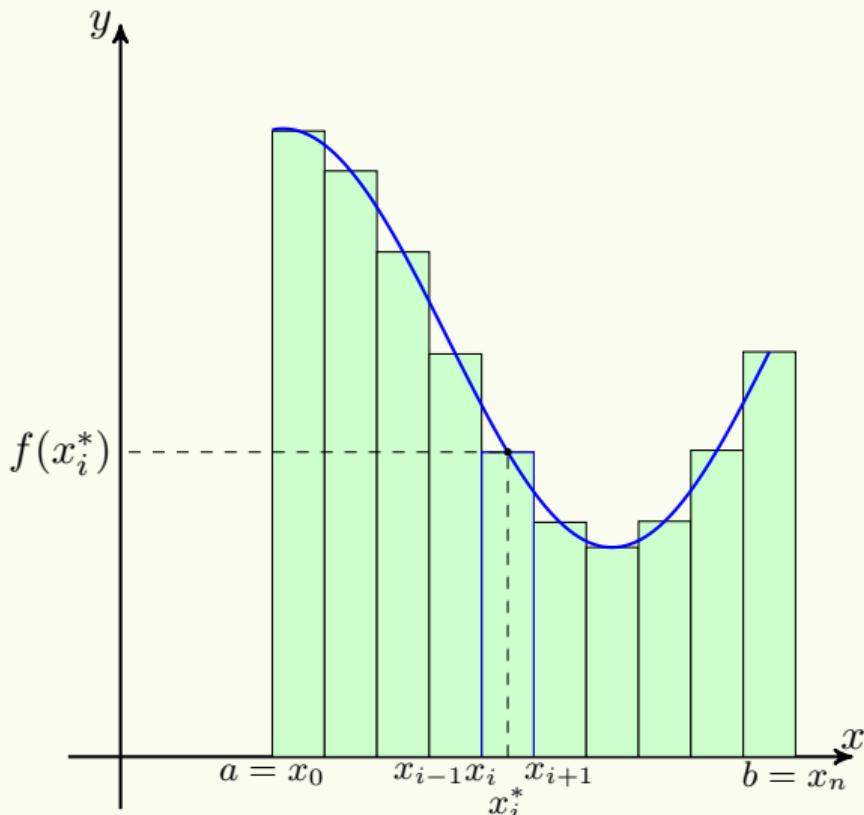
$$\ln(PV) = \ln T + C$$

$$PV = e^{\ln T + C} = e^{\ln T} \cdot e^C = T e^C = RT,$$

where $R = e^C$ is a constant.

☞ So, $\boxed{PV = RT}$.

Riemann Sum of Areas



What is Definite Integral?

Definition 2.1 (Definite Integral).

The **definite integral** of a continuous function f on the interval $[a, b]$, denoted $\int_a^b f(x) \, dx$, is the real number given by

$$\int_a^b f(x) \, dx = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x,$$

where $\Delta x = \frac{b-a}{n}$, $x_i = a + i\Delta x$ for $i = 0, \dots, n$.

The points x_i^* satisfy $x_{i-1} \leq x_i^* \leq x_i$ for $i = 0, \dots, n$.

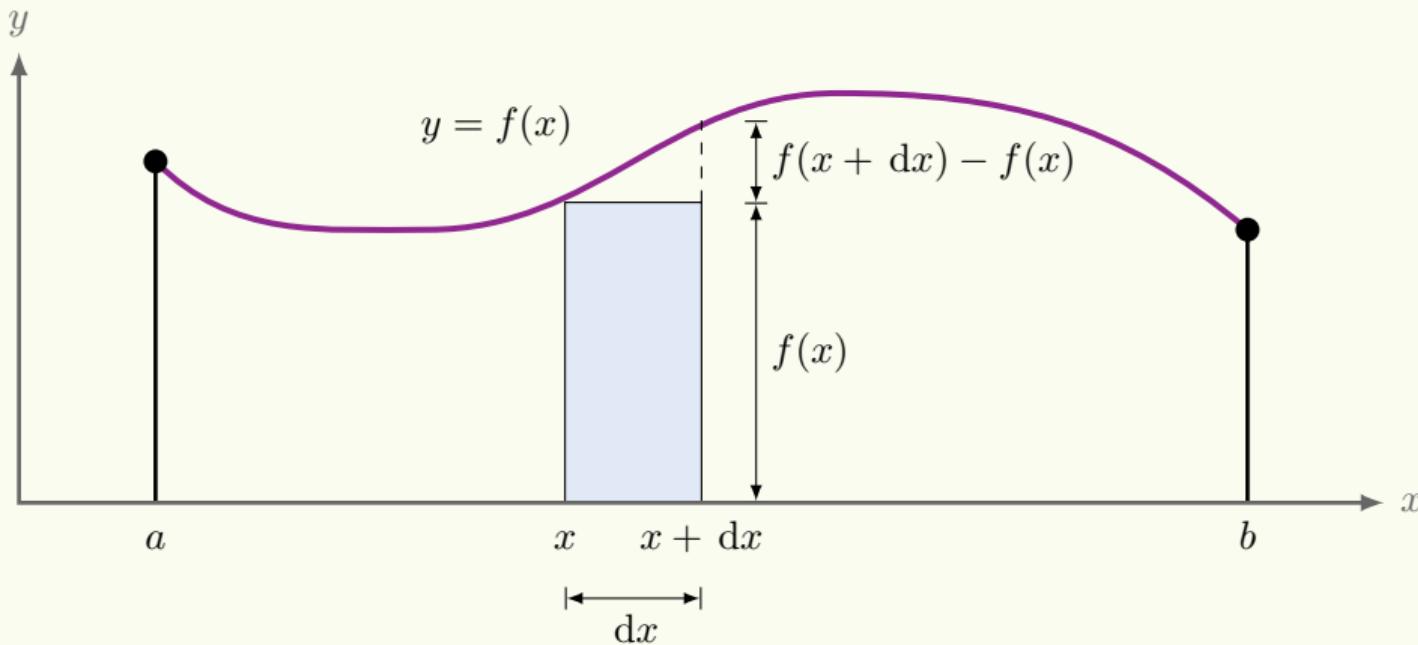
It represents the sum of the **infinitesimals** $f(x) dx$ for all $x \in [a, b]$.

Names

$$\int_a^b f(x) \, dx$$

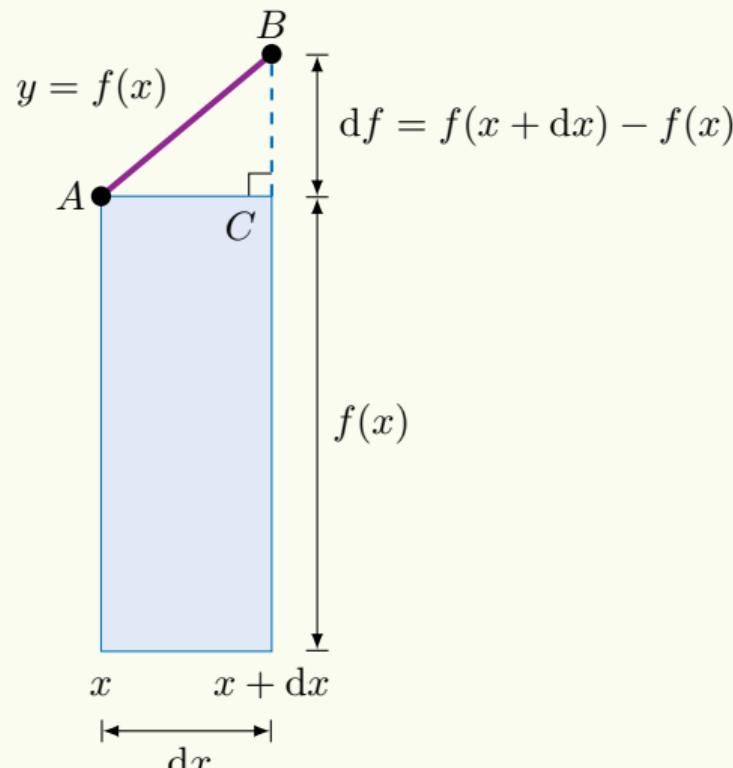
- ☛ The numbers a and b are called the **limits of integration**.
- ☛ a is the **lower limit of integration**.
- ☛ b is the **upper limit of integration**.
- ☛ The function $f(x)$ being integrated is called the **integrand**.

Infinitesimal Area



The infinitesimal $f(x) dx$ is the area of a rectangle.

Area under the Curve $y = f(x)$ over $[x, x + dx]$



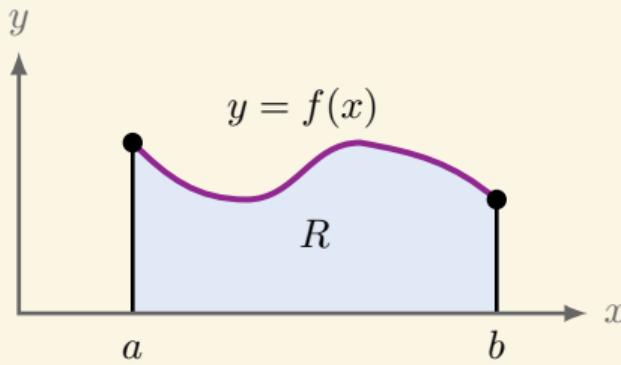
$$\begin{aligned}
 \text{Area of } \triangle ABC &= \frac{1}{2}(\text{base}) \times (\text{height}) \\
 &= \frac{1}{2}(\mathrm{d}x)(\mathrm{d}f) \\
 &= \frac{1}{2}(\mathrm{d}x)(f'(x) \mathrm{d}x) \\
 &= \frac{1}{2}f'(x)(\mathrm{d}x)^2 \\
 &\equiv 0
 \end{aligned}$$

Area under the Curve

Definition 2.2 (Area under the Curve).

For a function $f(x) \geq 0$ over $[a, b]$, the **area under the curve** $y = f(x)$ between $x = a$ and $x = b$, denoted by A , is given by

$$A = \int_a^b f(x) \, dx$$



and represents the area of the region R bounded above by $y = f(x)$, bounded below by the x -axis, and bounded on the sides by $x = a$ and $x = b$ (with $a < b$).

Example

$$\begin{aligned} \int_1^2 x^2 \, dx &= \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i^*) \Delta x_i = \lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_{i-1}) \frac{1}{n} = \lim_{n \rightarrow \infty} \sum_{i=1}^n x_{i-1}^2 \frac{1}{n} \\ &= \lim_{n \rightarrow \infty} \sum_{i=1}^n \left(1 + \frac{i-1}{n}\right)^2 \frac{1}{n} = \lim_{n \rightarrow \infty} \sum_{i=1}^n \left(\frac{1}{n} + \frac{2}{n^2}(i-1) + \frac{1}{n^3}(i-1)^2\right) \\ &= \lim_{n \rightarrow \infty} \left(\sum_{i=1}^n \frac{1}{n} + \frac{2}{n^2} \sum_{i=1}^n (i-1) + \frac{1}{n^3} \sum_{i=1}^n (i-1)^2\right) \\ &= \lim_{n \rightarrow \infty} \left(1 + \frac{2}{n^2} \sum_{i=1}^{n-1} i + \frac{1}{n^3} \sum_{i=1}^{n-1} i^2\right) \\ &= \lim_{n \rightarrow \infty} \left(1 + \frac{2}{n^2} \cdot \frac{(n-1)n}{2} + \frac{1}{n^3} \cdot \frac{(n-1)n(2n-1)}{6}\right) \\ &= \left(\lim_{n \rightarrow \infty} 1\right) + \left(\lim_{n \rightarrow \infty} \frac{n-1}{n}\right) + \left(\lim_{n \rightarrow \infty} \frac{2n^2 - 3n + 1}{6n^2}\right) = 1 + \frac{1}{1} + \frac{2}{6} = \boxed{\frac{7}{3}}. \end{aligned}$$

Area

Definition 2.3 (Area).

Let R be the region bounded by $y = f(x)$ and the x -axis between $x = a$ and $x = b$. If $f(x) \leq 0$ over $[a, b]$, then

$$\int_a^b f(x) \, dx = \text{the negative of the area of } R$$

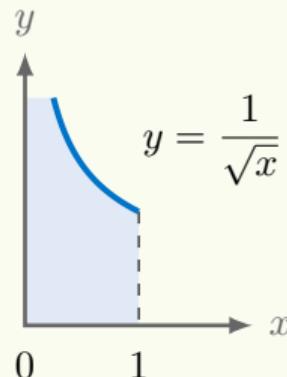
If $f(x)$ changes sign over $[a, b]$, then

$$\int_a^b f(x) \, dx = \text{the net area of } R,$$

where the parts of R above the x -axis count as positive area and the parts below count as negative area.

A Simple Example

Evaluate $\int_0^1 \frac{dx}{\sqrt{x}}$.



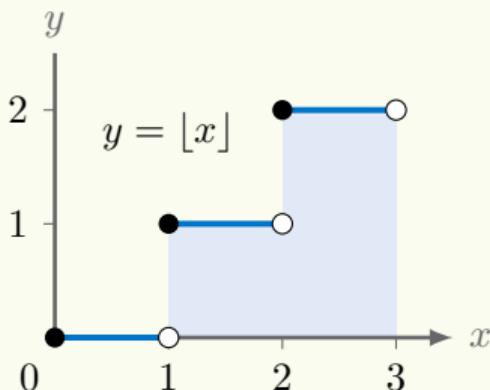
Solution: Since $x = 0$ is a vertical asymptote for $y = \frac{1}{\sqrt{x}}$,

$$\begin{aligned} \int_0^1 \frac{dx}{\sqrt{x}} &= \lim_{c \rightarrow 0+} \int_c^1 \frac{dx}{\sqrt{x}} = \lim_{c \rightarrow 0+} \left(2\sqrt{x} \bigg|_c^1 \right) \\ &= \lim_{c \rightarrow 0+} (2 - 2\sqrt{c}) = 2 - 0 = 2. \end{aligned}$$

This means that the area under the curve $y = 1/\sqrt{x}$ over the interval $(0, 1]$ equals 2. The region is infinite in the y direction.

Step Function

Evaluate $\int_1^3 \lfloor x \rfloor dx$.



Solution: The floor function $y = \lfloor x \rfloor$ has jump discontinuities at each integer value of x . The integral needs to be split at the point of discontinuity $x = 2$ within that interval:

$$\begin{aligned}
 \int_1^3 \lfloor x \rfloor dx &= \int_1^2 \lfloor x \rfloor dx + \int_2^3 \lfloor x \rfloor dx \\
 &= \lim_{b \rightarrow 2-} \int_1^b \lfloor x \rfloor dx + \lim_{c \rightarrow 3-} \int_2^c \lfloor x \rfloor dx \\
 &= \lim_{b \rightarrow 2-} \int_1^b 1 dx + \lim_{c \rightarrow 3-} \int_2^c 2 dx \\
 &= \lim_{b \rightarrow 2-} \left(x \Big|_1^b \right) + \lim_{c \rightarrow 3-} \left(2x \Big|_2^c \right) \\
 &= \lim_{b \rightarrow 2-} (b-1) + \lim_{c \rightarrow 3-} (2c-4) = (2-1) + (6-4) = 3.
 \end{aligned}$$

The Fundamental Theorem of Calculus

Theorem 3.1 (Fundamental Theorem of Calculus).

Suppose that a function f is differentiable on $[a, b]$.

(I) The function $A(x)$ defined on $[a, b]$ by

$$A(x) = \int_a^x f(t) \, dt$$

is differentiable on $[a, b]$, and

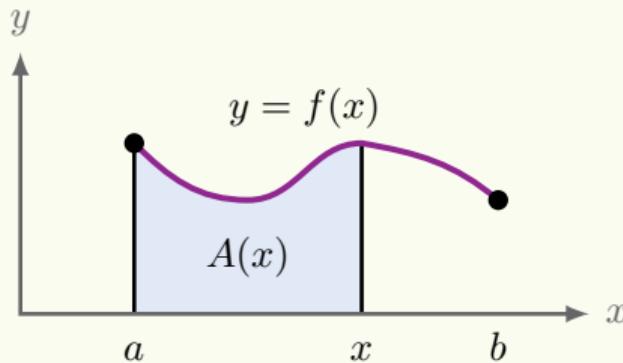
$$A'(x) = f(x)$$

for all x in $[a, b]$.

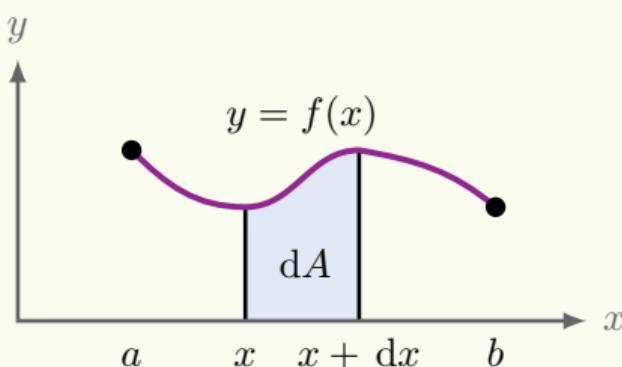
(III) If F is an **antiderivative** of f on $[a, b]$, i.e. $F'(x) \equiv f(x)$ for all x in $[a, b]$, then

$$\int_a^b f(x) \, dx = F(b) - F(a) .$$

Proof of (I)

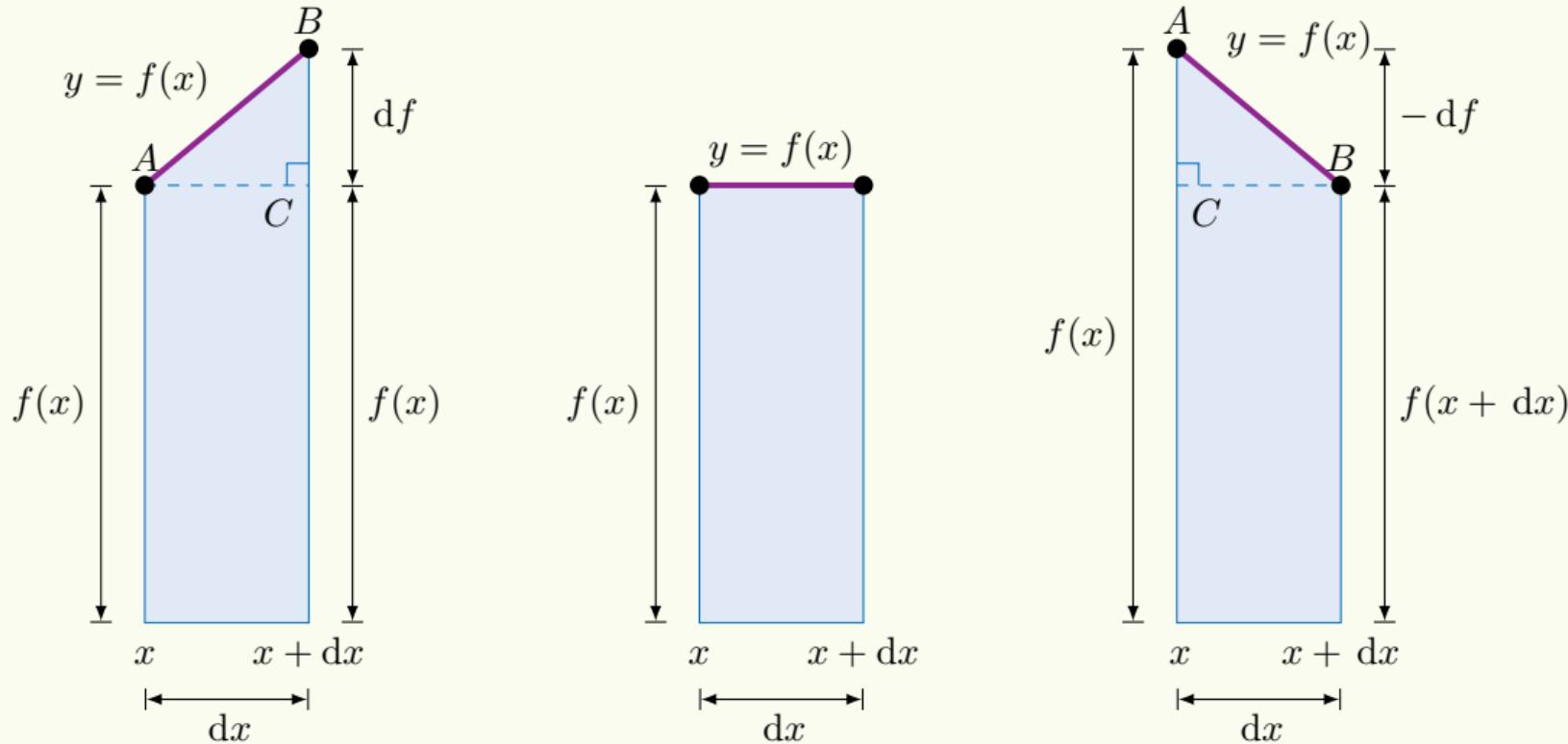


$$\text{area function } A(x) = \int_a^x f(t) dt$$



$$dA = A(x + dx) - A(x)$$

Proof of (I) $dA = f(x) dx$



Proof of (I)

- In the case where f is increasing over $[x, x + dx]$, the infinitesimal area dA is the sum of the area of the rectangle of height $f(x)$ and width dx and the area of the right triangle $\triangle ABC$. The area of $\triangle ABC$ is $\frac{1}{2}(df)(dx) = \frac{1}{2}f'(x)(dx)^2 = 0$, so $dA = f(x)dx$.
- In the case where f is constant over $[x, x + dx]$, the infinitesimal area dA is the area of the rectangle of height $f(x)$ and width dx . So again, $dA = f(x)dx$.
- In the case where f is decreasing over $[x, x + dx]$, the infinitesimal area dA is the sum of the area of the rectangle of height $f(x + dx)$ and width dx and the area of the right triangle $\triangle ABC$. Note that $df < 0$ since f is decreasing, and so the area of $\triangle ABC$ is $\frac{1}{2}(-df)(dx) = -\frac{1}{2}f'(x)(dx)^2 = 0$. Thus,

$$dA = f(x+dx)dx = (f(x)+df)dx = f(x)dx + f'(x)(dx)^2 = f(x)dx + 0 = f(x)dx.$$

Proof of (I) Conclusion

↙ So in all three cases,

$$dA = f(x) dx,$$

↙ So

$$A'(x) = \frac{dA}{dx} = f(x),$$

↙ It shows that $A(x)$ is differentiable and has derivative $f(x)$.

↙ This proves Part I of the **Fundamental Theorem of Calculus**.

Proof of (II)

- Let $F(x)$ be an antiderivative of $f(x)$ over $[a, b]$.
- Now $A(x) = \int_a^x f(x) \, dx$ is also an antiderivative of $f(x)$ over $[a, b]$ by Part I of the theorem.
- So $A(x)$ and $F(x)$ differ by a constant C . In other words,

$$A(x) = F(x) + C \quad \text{for all } x \text{ in } [a, b].$$

- By definition $A(a) = 0$, since it is the area under the curve over the interval $[a, a]$ of zero length. Thus,

$$0 = A(a) = F(a) + C \quad \Rightarrow \quad C = -F(a) \quad \Rightarrow \quad A(x) = F(x) - F(a),$$

for all x in $[a, b]$. So

$$\int_a^b f(x) \, dx = A(b) = F(b) - F(a).$$

Nice Trick

Theorem 3.2 (Translation).

For any constant a ,

$$\int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx.$$

Proof.

- Let $u = a - x$, so $x = a - u$, and $dx = -du$.
- Then $x = 0$ becomes $u = a$ and $x = a$ becomes $u = 0$ in the limits of integration:

$$\int_0^a f(x) \, dx = - \int_a^0 f(a - u) \, du = \int_0^a f(a - u) \, du = \int_0^a f(a - x) \, dx$$

Example of Definite Integral

Evaluate $\int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$.

Solution: Let $I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx$. Then by the translation theorem (with $a = \pi$):

$$\begin{aligned} I &= \int_0^\pi \frac{(\pi - x) \sin(\pi - x)}{1 + \cos^2(\pi - x)} dx = \int_0^\pi \frac{(\pi - x) \sin x}{1 + \cos^2 x} dx \\ &= \pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x} dx - \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx \quad \Rightarrow \quad I = \pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x} dx - I \end{aligned}$$

$$2I = \pi \int_0^\pi \frac{\sin x}{1 + \cos^2 x} dx = -\pi \tan^{-1}(\cos x) \Big|_0^\pi = -\pi \left(-\frac{\pi}{4} - \frac{\pi}{4} \right) = \frac{\pi^2}{2}$$

$$I = \boxed{\frac{\pi^2}{4}}.$$

Integration by Parts

Theorem 4.1 (Integration by Parts).

For differentiable functions u and v :

$$\int u \, dv = uv - \int v \, du \quad (1)$$

Proof.

- Start with the product rule: $(uv)' = u'v + uv'$.
- Integrate both sides: $\int (uv)' \, dx = \int u'v + uv' \, dx$.
- The result: $uv = \int u'v \, dx + \int uv' \, dx = \int v \, du + \int u \, dv$.

Example of LATE

Evaluate the integral $\int_{-1}^2 xe^{6x} dx$

- Which should be u ? Which should be dv ?
- LATE choice: **Logarithmic Algebraic Trigonometric Exponential**
- So let $u = x$ and $dv = e^{6x} dx$.
- Hence $du = dx$ and $\int dv = \int e^{6x} dx \implies v = \frac{1}{6}e^{6x}$.
- Plug into the formula. We get $\int xe^{6x} dx = \frac{1}{6}xe^{6x} - \int \frac{1}{6}e^{6x} dx = \frac{1}{6}xe^{6x} - \frac{1}{36}e^{6x}$.
- So

$$\begin{aligned}\int_{-1}^2 xe^{6x} dx &= \left(\frac{x}{6}e^{6x} - \frac{1}{36}e^{6x} \right) \bigg|_{-1}^2 = \left(\frac{1}{3}e^{12} - \frac{1}{36}e^{12} \right) - \left(-\frac{1}{6}e^{-6} - \frac{1}{36}e^{-6} \right) \\ &= \frac{11}{36}e^{12} + \frac{7}{36}e^{-6}.\end{aligned}$$

Normal Probability Density Function

- ✍ Gaussian or **normal probability density function** $p(x)$ with mean μ and variance σ^2 is

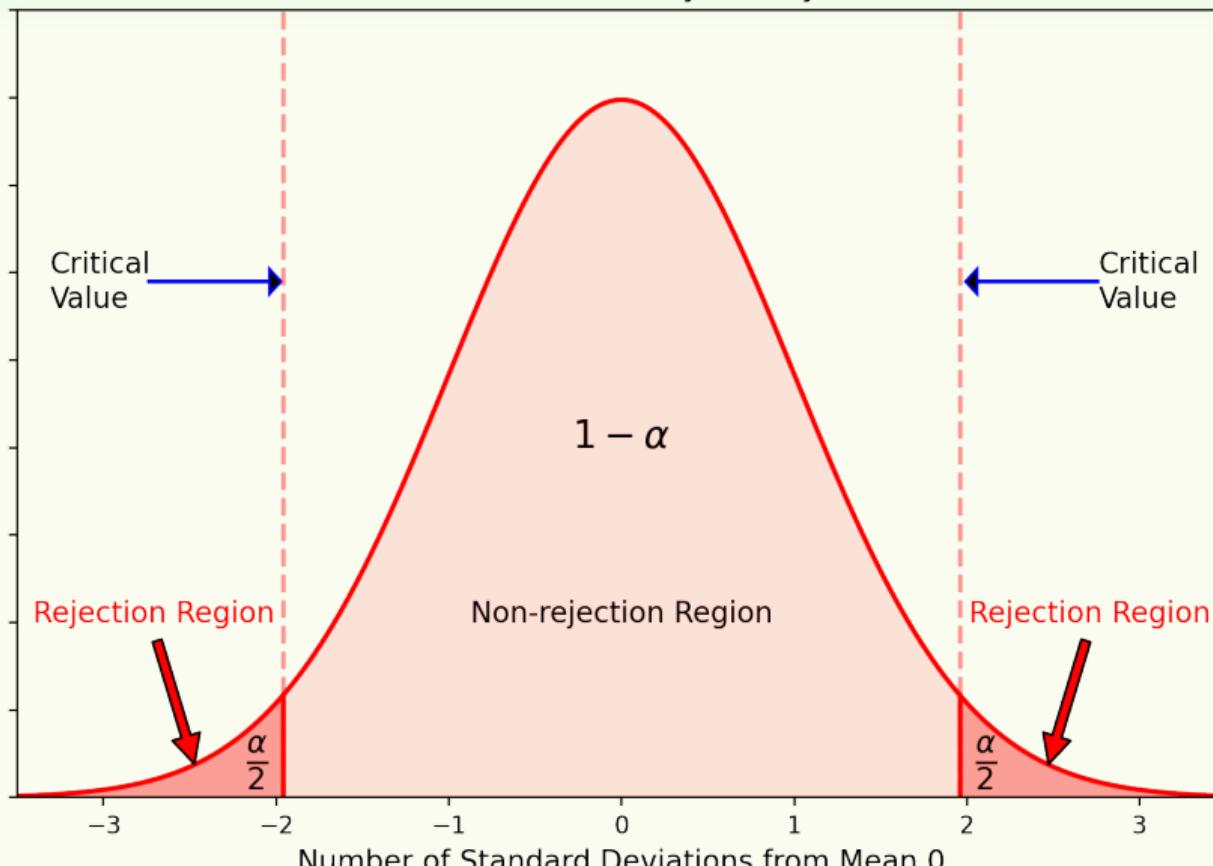
$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

- ✍ With no loss of generality, we can shift the **mean** μ to 0 by a change of variable that corresponds to a simple linear shift operation $x^\sharp = x - \mu$. Then reuse x for the variable of $p(x)$. So

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x}{\sigma}\right)^2}.$$

- ✍ Our goal is to derive $p(x)$ from first principles, so as to gain an intuitive understanding of **Gaussian distribution**.

Standard Normal Probability Density Function



Setup and the Assumption of Independence

- Suppose we release a packet of fine powder vertically from a height above the origin of the $x - y$ plane in an infinitely large room of still air.
- Consider the interval Δx between x and $x + \Delta x$.
- The probability for the powder to land in this interval Δx is $p(x)\Delta x$.
- Similarly the probability of powder landing in the Δy is $p(y)\Delta y$.
- The joint probability of landing in the infinitesimal area $\Delta x\Delta y$ is, by the assumption of independence,

$$p(x)\Delta x p(y)\Delta y.$$

Assumption of Isotropy

- We postulate that this joint probability is equivalent to $q(r)\Delta x\Delta y$, where $q(r)$ is the probability density function that is dependent only on the distance r from the origin $(0, 0)$.
- This is because in the closed room with no ventilation, we may assume that the powder is equally likely to disperse to every direction.
- So in addition to independence, isotropy is also assumed. Consequently,

$$p(x)\Delta x \, p(y)\Delta y = q(r)\Delta x \Delta y.$$

In other words, under the assumption of isotropy,

$$p(x)p(y) = q(r).$$

Polar Coordinate System

- In the polar coordinate system, $x = r \cos \theta$ and $y = r \sin \theta$, i.e., x and y are functions of r and θ .
- Differentiating both sides with respect to the angle θ , we obtain

$$p(x) \frac{\partial p(y)}{\partial \theta} + p(y) \frac{\partial p(x)}{\partial \theta} = 0. \quad (2)$$

- By calculus' chain rule, we have

$$\frac{\partial p(y)}{\partial \theta} = \frac{dp(y)}{dy} \frac{\partial y(\theta)}{\partial \theta}, \quad \text{and} \quad \frac{\partial p(x)}{\partial \theta} = \frac{dp(x)}{dx} \frac{\partial x(\theta)}{\partial \theta}.$$

Differential Equation

Since $\frac{d \sin \theta}{d\theta} = \cos \theta$ and $\frac{d \cos \theta}{d\theta} = -\sin \theta$, we obtain

$$\frac{\partial y(\theta)}{\partial \theta} = r \cos \theta = x \quad \text{and} \quad \frac{\partial x(\theta)}{\partial \theta} = -r \sin \theta = -y.$$

It follows that the differential equation (2) becomes

$$p(x)p'(y)x - p(y)p'(x)y = 0.$$

Here the prime ' refers to differentiation with respect to the function's variable.

Using the Assumption of Independence

>To solve this differentiation equation, we rewrite it as follows:

$$\frac{p'(x)}{xp(x)} = \frac{p'(y)}{yp(y)}.$$

Since x and y are independent, the ratio defined by the differential equation must necessarily be a constant C . That is,

$$\frac{p'(x)}{xp(x)} = \frac{p'(y)}{yp(y)} = C.$$

Next, to solve the differential equation, $\frac{p'(x)}{xp(x)} = C$, we write

$$\frac{p'(x)}{p(x)} = Cx, \quad \text{equivalently,} \quad \frac{dp}{p} = Cx \, dx.$$

Solution with Two Constants

☞ The solution is the indefinite integral with the integration constant a , i.e.,

$$\ln(p(x)) = \frac{C}{2}x^2 + a.$$

☞ It can be rewritten as, with $A := e^a$,

$$p(x) = A \exp\left(\frac{C}{2}x^2\right).$$

☞ From the standpoint of diffusion in dispersing the powder, it is less likely for the density $p(x)$ to be large when x is large, i.e., far away from the origin.

☞ Therefore, the constant C is necessarily negative. Hence we write $C =: -\zeta^2$, and the probability density function $p(x)$ becomes

$$p(x) = Ae^{-\frac{\zeta^2}{2}x^2}.$$

Square the Integral

Now, probability must sum to 1.

$$\int_{-\infty}^{\infty} p(x) dx = 1.$$

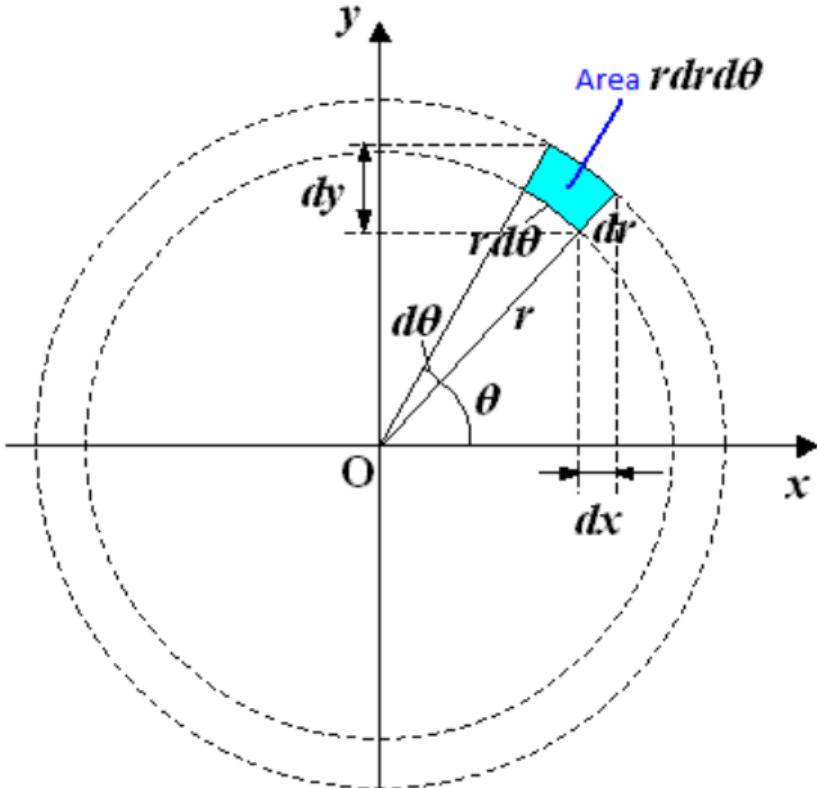
Since $e^{-\frac{\zeta^2}{2}x^2}$ is an even function, it follows that

$$\frac{1}{A} = \int_{-\infty}^{\infty} e^{-\frac{\zeta^2}{2}x^2} dx = 2 \int_0^{\infty} e^{-\frac{\zeta^2}{2}x^2} dx.$$

To change the coordinate system from Cartesian to polar, we square both sides of the equation to obtain

$$\frac{1}{4A^2} = \left(\int_0^{\infty} e^{-\frac{\zeta^2}{2}x^2} dx \right) \times \left(\int_0^{\infty} e^{-\frac{\zeta^2}{2}y^2} dy \right). \quad (3)$$

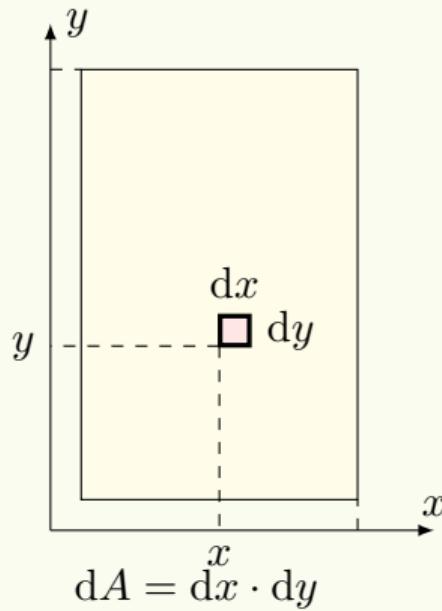
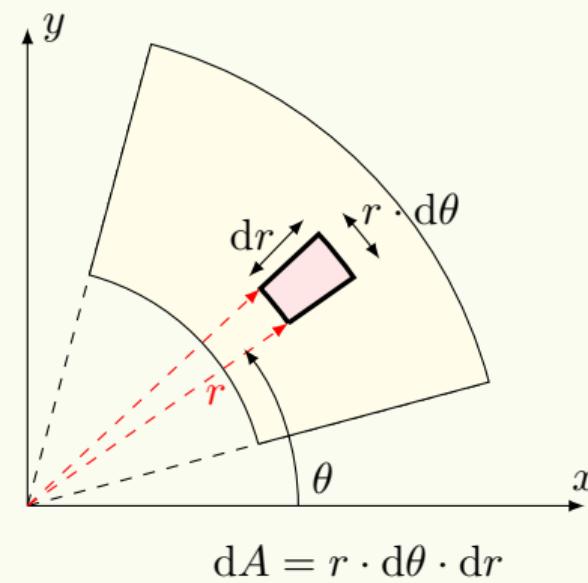
Infinitesimal Area



Derivation of Infinitesimal Areas

The infinitesimal area $A := dx \cdot dy$ is equivalent to $dr \cdot r d\theta$.

$$dA = \frac{1}{2}(r + dr)^2 d\theta - \frac{1}{2}r^2 d\theta = r dr d\theta + \frac{1}{2}(dr)^2 d\theta = r dr d\theta$$



Change to Polar Coordinates

Consequently, we obtain, knowing that $r^2 = x^2 + y^2$,

$$\int_0^\infty \int_0^\infty e^{-\frac{\zeta^2}{2}(x^2+y^2)} dx dy = \int_0^{\frac{\pi}{2}} \int_0^\infty e^{-\frac{\zeta^2}{2}r^2} r dr d\theta.$$

The region of integration on the left-hand side is the first quadrant.

Accordingly, in the polar coordinate system,

- r ranges from 0 to ∞
- the angle θ goes from 0° to 90° , which is $\pi/2$.

Integration in Polar Coordinates: A Identified

- Now, we note that the radius r and θ are independent.
- So we can separate the double integral into a product of two single integrals. Hence,

$$\begin{aligned}\frac{1}{4A^2} &= \int_0^{\frac{\pi}{2}} \int_0^{\infty} e^{-\frac{\zeta^2}{2}r^2} r dr d\theta = \int_0^{\frac{\pi}{2}} d\theta \int_0^{\infty} e^{-\frac{\zeta^2}{2}r^2} r dr \\ &= \frac{\pi}{2} \int_0^{\infty} e^{-\frac{\zeta^2}{2}r^2} d(r^2/2) = \frac{\pi}{2} \int_0^{\infty} e^{-\zeta^2 z} dz, \quad \text{where } z := \frac{r^2}{2} \\ &= \frac{\pi}{2} \frac{1}{\zeta^2}.\end{aligned}$$

- In this way, we have identified A : $\frac{1}{4A^2} = \frac{\pi}{2\zeta^2} \implies A = \frac{\zeta}{\sqrt{2\pi}}$.

- It follows that $p(x) = \frac{\zeta}{\sqrt{2\pi}} e^{-\frac{\zeta^2}{2}x^2}$.

What is ζ ?

When the mean is zero, the variance is defined as

$$\sigma^2 := \int_{-\infty}^{\infty} x^2 p(x) dx = 2 \int_0^{\infty} x^2 p(x) dx. \quad (4)$$

With $p(x) = \frac{\zeta}{\sqrt{2\pi}} e^{-\frac{\zeta^2}{2}x^2}$,

$$\frac{\sigma^2}{2} = \frac{\zeta}{\sqrt{2\pi}} \int_0^{\infty} x^2 e^{-\frac{\zeta^2}{2}x^2} dx.$$

To performing the integration by parts, we let $u = x$. Hence $du = dx$, and

$$dv = x e^{-\zeta^2 \frac{x^2}{2}} dx = e^{-\zeta^2 \frac{x^2}{2}} d\left(\frac{x^2}{2}\right).$$

$$\int u \, dv = uv - \int v \, du \text{ and } \zeta \text{ Identified}$$

For the integration $\int dv$, we let $w = \frac{x^2}{2}$, and we obtain $\int e^{-\zeta^2 w} dw$. It follows that

$$v = -\frac{1}{\zeta^2} e^{-\zeta^2 \frac{x^2}{2}}.$$

Therefore, for (4), we have

$$\begin{aligned}\sigma^2 &= 2 \int_0^\infty x^2 p(x) dx = \frac{\zeta}{\sqrt{2\pi}} \left(-2x \frac{1}{\zeta^2} e^{-\zeta^2 \frac{x^2}{2}} \Big|_0^\infty + 2 \int_0^\infty \frac{1}{\zeta^2} e^{-\zeta^2 \frac{x^2}{2}} dx \right) \\ &= 0 + \frac{1}{\zeta^2} \left(\frac{\zeta}{\sqrt{2\pi}} \int_{-\infty}^\infty e^{-\zeta^2 \frac{x^2}{2}} dx \right) = \frac{1}{\zeta^2} \times 1 \\ &= \frac{1}{\zeta^2} \quad \Rightarrow \quad \boxed{\zeta = \frac{1}{\sigma}}.\end{aligned}$$

Final Result

- In this way, we have identified ζ to be the reciprocal of standard deviation σ .
- Hence, we derived the normal probability density function (pdf) with mean 0 and variance σ^2 :

$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x}{\sigma})^2}.$$

- When the variance is equal to 1, we obtain the standard normal pdf.

Keywords

antiderivative, 5, 18
antiderivatives, 6
area under the curve, 13
definite integral, 9
differentiable, 18
Fundamental Theorem of Calculus, 18, 22
Gaussian, 28
Gaussian distribution, 28
indefinite integral, 6
infinitesimal, 6

infinitesimals, 9
integral sign, 6
integrand, 10
Integration by Parts, 26
LATE, 27
limits of integration, 10
lower limit of integration, 10
mean, 28
normal probability density function, 28
upper limit of integration, 10