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Inspiring Quote

Science is the Differential Calculus of the mind. Art the Integral
Calculus; they may be beautiful when apart, but are greatest
only when combined.

— Ronald Ross

Christopher Ting Practical English II June 27, 2025 Version 1.0 3/44
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Learning Outcomes

A Develop an intuitive understanding of differentiation versus integration.

A Describe definite integral as area under the curve.

A Apply the geometric sum in integration.

A Explain the fundamental theorem of calculus.

A Apply the integration technique based on the translation theorem.

A Apply the technique of integration by parts.

A Explain the heuristics of LATE.

A Understand how normal distribution can be derived from first principles.
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Revision

Definition 1.1 (Antiderivative).
An antiderivative F (x) of a function f(x) is a function whose derivative is f(x). In other
words, F ′(x) = f(x).

Theorem 1.2 (Constant of Integration).
Suppose that F (x) and G(x) are antiderivatives of a function f(x). Then F (x) and G(x)
differ only by a constant. That is, F (x) = G(x) + C for some constant C.

So, to find all antiderivatives of a function, it is necessary only to find one antiderivative
and then add a generic constant to it.
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Indefinite Integral
Definition 1.3 (Indefinite Integral).
The indefinite integral of a function f(x) is denoted by∫

f(x) dx.

It represents the entire family of antiderivatives of f(x).

A The large S-shaped symbol before f(x) is called an integral sign.

A
d

dx

(∫
f(x) dx

)
= f(x).

A For an antiderivative F (x) of a function f(x), the infinitesimal dF is given by

dF = F ′(x) dx = f(x) dx, and so F (x) =

∫
f(x) dx =

∫
dF .
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Application: Gas Law
A Pressure P , volume V , and temperature T of a tank of gas:

dP

P
+

dV

V
=

dT

T

A Integrating both sides of the equation yields∫
dP

P
+

∫
dV

V
=

∫
dT

T

ln P + ln V = ln T + C (C is a constant)

ln (PV ) = ln T + C

PV = eln T+C = eln T · eC = T eC = RT,
where R = eC is a constant.

A So, PV = RT .
Christopher Ting Practical English II June 27, 2025 Version 1.0 7/44
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Riemann Sum of Areas

x

y

a = x0 b = xn
x∗
i

f(x∗i )

xi−1xi xi+1
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What is Definite Integral?

Definition 2.1 (Definite Integral).

The definite integral of a continuous function f on the interval [a, b], denoted
∫ b

a
f(x) dx,

is the real number given by ∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(x∗i )∆x,

where ∆x =
b− a

n
, xi = a+ i∆x for i = 0, . . . , n.

The points x∗i satisfy xi−1 ≦ x∗i ≦ xi for i = 0, . . . , n.

It represents the sum of the infinitesimals f(x) dx for all x ∈ [a, b].
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Names

∫ b

a
f(x) dx

A The numbers a and b are called the limits of integration.

A a is the lower limit of integration.

A b is the upper limit of integration.

A The function f(x) being integrated is called the integrand.
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Infinitesimal Area

y = f(x)

f(x)

f(x+ dx)− f(x)

y

x
a bx x+ dx

dx

The infinitesimal f(x) dx is the area of a rectangle.
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Area under the Curve y = f(x) over [x, x+ dx]

f(x)

df = f(x+ dx)− f(x)
y = f(x)

x x+ dx

dx

A

B

C

Area of △ABC =
1

2
(base) × (height)

=
1

2
(dx)(df)

=
1

2
(dx)(f ′(x) dx)

=
1

2
f ′(x)(dx)2

= 0
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Area under the Curve
Definition 2.2 (Area under the Curve).
For a function f(x) ≧ 0 over [a, b], the area under the curve y = f(x) between x = a and
x = b, denoted by A, is given by

A =

∫ b

a
f(x) dx

y = f(x)

y

x
a b

R

and represents the area of the region R bounded above by y = f(x), bounded below by
the x-axis, and bounded on the sides by x = a and x = b (with a < b).
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Example∫ 2

1

x2 dx = lim
n→∞

n∑
i=1

f(x∗
i )∆xi = lim

n→∞

n∑
i=1

f(xi−1)
1

n
= lim

n→∞

n∑
i=1

x2
i−1

1

n

= lim
n→∞

n∑
i=1

(
1 +

i− 1

n

)2
1

n
= lim

n→∞

n∑
i=1

(
1

n
+

2

n2
(i− 1) +

1

n3
(i− 1)2

)

= lim
n→∞

(
n∑

i=1

1

n
+

2

n2

n∑
i=1

(i− 1) +
1

n3

n∑
i=1

(i− 1)2
)

= lim
n→∞

(
1 +

2

n2

n−1∑
i=1

i +
1

n3

n−1∑
i=1

i2
)

= lim
n→∞

(
1 +

2

n2
· (n− 1)n

2
+

1

n3
· (n− 1)n(2n− 1)

6

)

=
(
lim

n→∞
1
)

+

(
lim

n→∞

n− 1

n

)
+

(
lim

n→∞

2n2 − 3n+ 1

6n2

)
= 1 +

1

1
+

2

6
=

7

3
.
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Area

Definition 2.3 (Area).
Let R be the region bounded by y = f(x) and the x-axis between x = a and x = b. If
f(x) ≦ 0 over [a, b], then∫ b

a
f(x) dx = the negative of the area of R

If f(x) changes sign over [a, b], then∫ b

a
f(x) dx = the net area of R,

where the parts of R above the x-axis count as positive area and the parts below count as
negative area.
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A Simple Example

Evaluate
∫ 1

0

dx√
x

.

y

x
0 1

y =
1√
x

Solution: Since x = 0 is a vertical asymptote for

y =
1√
x

,

∫ 1

0

dx√
x

= lim
c→0+

∫ 1

c

dx√
x

= lim
c→0+

2
√
x

∣∣∣∣∣
1

c


= lim

c→0+
(2 − 2

√
c ) = 2 − 0 = 2 .

This means that the area under the curve y = 1/
√
x

over the interval (0, 1] equals 2. The region is infinite
in the y direction.
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Step Function

Evaluate
∫ 3

1
⌊x⌋ dx .

y

x
0 1 2 3

1

2 y = ⌊x⌋

Solution: The floor function y = ⌊x⌋ has jump
discontinuities at each integer value of x. The integral
needs to be split at the point of discontinuity x = 2
within that interval:∫ 3

1

⌊x⌋ dx =

∫ 2

1

⌊x⌋ dx +

∫ 3

2

⌊x⌋ dx

= lim
b→2−

∫ b

1

⌊x⌋ dx + lim
c→3−

∫ c

2

⌊x⌋ dx

= lim
b→2−

∫ b

1

1 dx + lim
c→3−

∫ c

2

2 dx

= lim
b→2−

x

∣∣∣∣∣
b

1

 + lim
c→3−

(
2x

∣∣∣∣∣
c

2

)

= lim
b→2−

(b− 1) + lim
c→3−

(2c− 4) = (2− 1) + (6− 4) = 3 .
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The Fundamental Theorem of Calculus
Theorem 3.1 (Fundamental Theorem of Calculus).
Suppose that a function f is differentiable on [a, b].

(I) The function A(x) defined on [a, b] by

A(x) =

∫ x

a
f(t) dt

is differentiable on [a, b], and
A′(x) = f(x)

for all x in [a, b].
(II) If F is an antiderivative of f on [a, b], i.e. F ′(x) = f(x) for all x in [a, b], then∫ b

a
f(x) dx = F (b) − F (a) .

Christopher Ting Practical English II June 27, 2025 Version 1.0 18/44
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Proof of (I)

y = f(x)

y

x
a x b

A(x)

area function A(x) =

∫ x

a
f(t) dt

y = f(x)

y

x
a x x+ dx b

dA

dA = A(x+ dx)−A(x)
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Proof of (I) dA = f(x) dx

f(x) f(x)

df
y = f(x)

x x+ dx

dx

A

B

C

f(x)

y = f(x)

x x+ dx

dx

f(x)

f(x+ dx)

− df

y = f(x)

x x+ dx

dx

A

B

C
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Proof of (I)
A In the case where f is increasing over [x, x+ dx], the infinitesimal area dA is the

sum of the area of the rectangle of height f(x) and width dx and the area of the right

triangle △ABC. The area of △ABC is
1

2
(df)( dx) =

1

2
f ′(x)(dx)2 = 0, so

dA = f(x) dx.

A In the case where f is constant over [x, x+ dx], the infinitesimal area dA is the area
of the rectangle of height f(x) and width dx. So again, dA = f(x) dx.

A In the case where f is decreasing over [x, x+ dx], the infinitesimal area dA is the
sum of the area of the rectangle of height f(x+ dx) and width dx and the area of the
right triangle △ABC. Note that df < 0 since f is decreasing, and so the area of

△ABC is
1

2
(−df)(dx) = −1

2
f ′(x)(dx)2 = 0. Thus,

dA = f(x+dx) dx = (f(x)+df) dx = f(x) dx + f ′(x)(dx)2 = f(x) dx + 0 = f(x) dx .
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Proof of (I) Conclusion

A So in all three cases,
dA = f(x) dx,

A So
A′(x) =

dA

dx
= f(x),

A It shows that A(x) is differentiable and has derivative f(x).

A This proves Part I of the Fundamental Theorem of Calculus.
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Proof of (II)

A Let F (x) be an antiderivative of f(x) over [a, b].

A Now A(x) =

∫ x

a
f(x) dx is also an antiderivative of f(x) over [a, b] by Part I of the

theorem.
A So A(x) and F (x) differ by a constant C. In other words,

A(x) = F (x) + C for all x in [a, b].

A By definition A(a) = 0, since it is the area under the curve over the interval [a, a] of
zero length. Thus,

0 = A(a) = F (a) + C ⇒ C = −F (a) ⇒ A(x) = F (x) − F (a),

for all x in [a, b]. So ∫ b

a
f(x) dx = A(b) = F (b) − F (a).
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Nice Trick

Theorem 3.2 (Translation).
For any constant a, ∫ a

0
f(x) dx =

∫ a

0
f(a− x) dx.

Proof.

A Let u = a− x, so x = a− u, and dx = − du.
A Then x = 0 becomes u = a and x = a becomes u = 0 in the limits of integration:∫ a

0
f(x) dx = −

∫ 0

a
f(a− u) du =

∫ a

0
f(a− u) du =

∫ a

0
f(a− x) dx

Christopher Ting Practical English II June 27, 2025 Version 1.0 24/44
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Example of Definite Integral

Evaluate
∫ π

0

x sin x

1 + cos2 x
dx.

Solution: Let I =

∫ π

0

x sin x

1 + cos2 x
dx. Then by the translation theorem (with a = π):

I =

∫ π

0

(π − x) sin (π − x)

1 + cos2(π − x)
dx =

∫ π

0

(π − x) sin x

1 + cos2 x
dx

= π

∫ π

0

sin x

1 + cos2 x
dx −

∫ π

0

x sin x

1 + cos2 x
dx =⇒ I = π

∫ π

0

sin x

1 + cos2 x
dx− I

2I = π

∫ π

0

sin x

1 + cos2 x
dx = −π tan−1(cos x)

∣∣∣∣∣
π

0

= −π
(
−π

4
− π

4

)
=

π2

2

I =
π2

4
.
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Integration by Parts
Theorem 4.1 (Integration by Parts).

For differentiable functions u and v:∫
u dv = uv −

∫
v du (1)

Proof.

w Start with the product rule: (u v)′ = u′ v + u v′.

w Integrate both sides:
∫

(u v)′dx =

∫
u′ v + u v′dx.

w The result: uv =

∫
u′ v dx+

∫
u v′ dx =

∫
v du+

∫
u dv.
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Example of LATE

Evaluate the integral
∫ 2

−1
xe6x dx

w Which should be u? Which should be dv?
w LATE choice: Logarithmic Algebraic Trigonometric Exponential
w So let u = x and dv = e6xdx.
w Hence du = dx and

∫
dv =

∫
e6xdx =⇒ v =

1

6
e6x.

w Plug into the formula. We get
∫

xe6xdx =
1

6
xe6x −

∫
1

6
e6xdx =

1

6
xe6x − 1

36
e6x.

w So ∫ 2

−1
xe6x dx =

(
x

6
e6x − 1

36
e6x
)∣∣∣∣2

−1

=

(
1

3
e12 − 1

36
e12
)
−
(
−1

6
e−6 − 1

36
e−6

)
=

11

36
e12 +

7

36
e−6.
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Normal Probability Density Function

A Gaussian or normal probability density function p(x) with mean µ and variance
σ2 is

p(x) =
1

σ
√
2π

e
−1
2

(x−µ
σ

)2

.

A With no loss of generality, we can shift the mean µ to 0 by a change of variable that
corresponds to a simple linear shift operation x♯ = x− µ. Then reuse x for the
variable of p(x). So

p(x) =
1

σ
√
2π

e−
1
2(

x
σ )

2

.

A Our goal is to derive p(x) from first principles, so as to gain an intuitive understanding
of Gaussian distribution.
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Setup and the Assumption of Independence

A Suppose we release a packet of fine power vertically from a height above the origin
of the x− y plane in an infinitely large room of still air.

A Consider the interval ∆x between x and x+∆x.

A The probability for the powder to land in this interval ∆x is p(x)∆x.

A Similarly the probability of power landing in the ∆y is p(y)∆y.

A The joint probability of landing in the infinitesimal area ∆x∆y is, by the assumption of
independence,

p(x)∆x p(y)∆y.
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Assumption of Isotropy

A We postulate that this joint probability is equivalent to q(r)∆x∆y, where q(r) is the
probability density function that is dependent only on the distance r from the origin
(0, 0).

A This is because in the closed room with no ventilation, we may assume that the
powder is equally likely to disperse to every direction.

A So in addition to independence, isotropy is also assumed. Consequently,

p(x)∆x p(y)∆y = q(r)∆x∆y.

A In other words, under the assumption of isotropy,

p(x)p(y) = q(r).
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Polar Coordinate System

A In the polar coordinate system, x = r cos θ and y = r sin θ, i.e., x and y are functions
of r and θ.

A Differentiating both sides with respect to the angle θ, we obtain

p(x)
∂p(y)

∂θ
+ p(y)

∂p(x)

∂θ
= 0. (2)

A By calculus’ chain rule, we have

∂p(y)

∂θ
=

dp(y)

dy

∂y(θ)

∂θ
, and

∂p(x)

∂θ
=

dp(x)

dx

∂x(θ)

∂θ
.
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Differential Equation

A Since
d sin θ

dθ
= cos θ and

d cos θ

dθ
= − sin θ, we obtain

∂y(θ)

∂θ
= r cos θ = x and

∂x(θ)

∂θ
= −r sin θ = −y.

A It follows that the differential equation (2) becomes

p(x)p′(y)x− p(y)p′(x)y = 0.

A Here the prime ′ refers to differentiation with respect to the function’s variable.
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Using the Assumption of Independence

A To solve this differentiation equation, we rewrite it as follows:

p′(x)

xp(x)
=

p′(y)

yp(y)
.

A Since x and y are independent, the ratio defined by the differential equation must
necessarily be a constant C. That is,

p′(x)

xp(x)
=

p′(y)

yp(y)
= C.

A Next, to solve the differential equation,
p′(x)

xp(x)
= C, we write

p′(x)

p(x)
= Cx, equivalently,

dp

p
= Cxdx.
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Solution with Two Constants
A The solution is the indefinite integral with the integration constant a, i.e.,

ln
(
p(x)

)
=

C

2
x2 + a.

A It can be rewritten as, with A := ea,

p(x) = A exp

(
C

2
x2
)
.

A From the standpoint of diffusion in dispersing the powder, it is less likely for the
density p(x) to be large when x is large, i.e., far away from the origin.

A Therefore, the constant C is necessarily negative. Hence we write C =: −ζ2, and the
probability density function p(x) becomes

p(x) = Ae− ζ2

2
x2
.
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Square the Integral

A Now, probability must sum to 1. ∫ ∞

−∞
p(x) dx = 1.

A Since e− ζ2

2
x2

is an even function, it follows that

1

A
=

∫ ∞

−∞
e− ζ2

2 x2

dx = 2

∫ ∞

0
e− ζ2

2 x2

dx.

A To change the coordinate system from Cartesian to polar, we square both sides of
the equation to obtain

1

4A2
=

(∫ ∞

0
e− ζ2

2 x2

dx

)
×
(∫ ∞

0
e− ζ2

2 y2 dy

)
. (3)
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Infinitesimal Area
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Derivation of Infinitesimal Areas
A The infinitesimal area A := dx · dy is equivalent to dr · rdθ.

dA =
1

2
(r + dr)2dθ − 1

2
r2dθ = r dr dθ +

1

2
(dr)2 dθ = r dr dθ

x

y

dx
dy

x

y

dA = dx · dy

x

y

r

r · dθ
dr

θ

dA = r · dθ · dr
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Change to Polar Coordinates

A Consequently, we obtain, knowing that r2 = x2 + y2,∫ ∞

0

∫ ∞

0
e− ζ2

2

(
x2+y2

)
dx dy =

∫ π
2

0

∫ ∞

0
e− ζ2

2 r2r dr dθ.

A The region of integration on the left-hand side is the first quadrant.

A Accordingly, in the polar coordinate system,

r ranges from 0 to ∞

the angle θ goes from 0◦ to 90◦, which is π/2.
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Integration in Polar Coordinates: A Identified
A Now, we note that the radius r and θ are independent.

A So we can separate the double integral into a product of two single integrals. Hence,

1

4A2
=

∫ π
2

0

∫ ∞

0
e− ζ2

2 r2r dr dθ =

∫ π
2

0
dθ

∫ ∞

0
e− ζ2

2 r2r dr

=
π

2

∫ ∞

0
e− ζ2

2 r2d(r2/2) =
π

2

∫ ∞

0
e−ζ2zdz, where z :=

r2

2

=
π

2

1

ζ2
.

A In this way, we have identified A:
1

4A2
=

π

2ζ2
=⇒ A =

ζ√
2π

.

A It follows that p(x) =
ζ√
2π

e− ζ2

2 x2

.
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What is ζ?

A When the mean is zero, the variance is defined as

σ2 :=

∫ ∞

−∞
x2p(x) dx = 2

∫ ∞

0
x2p(x) dx. (4)

A With p(x) =
ζ√
2π

e− ζ2

2 x2

,

σ2

2
=

ζ√
2π

∫ ∞

0
x2e− ζ2

2 x2

dx.

A To performing the integration by parts, we let u = x. Hence du = dx, and

dv = x e−ζ2
x2

2 dx = e−ζ2
x2

2 d

(
x2

2

)
.
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u dv = uv −

∫
v du and ζ Identified

A For the integration
∫

dv, we let w =
x2

2
, and we obtain

∫
e−ζ2wdw. It follows that

v = − 1

ζ2
e−ζ2

x2

2 .

A Therefore, for (4), we have

σ2 = 2

∫ ∞

0
x2p(x)dx =

ζ√
2π

(
−2x

1

ζ2
e−ζ2

x2

2

∣∣∣∣∣
∞

0

+ 2

∫ ∞

0

1

ζ2
e−ζ2

x2

2 dx

)

= 0 +
1

ζ2

(
ζ√
2π

∫ ∞

−∞
e−ζ2

x2

2 dx

)
=

1

ζ2
× 1

=
1

ζ2
=⇒ ζ =

1

σ
.
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Final Result

A In this way, we have identified ζ to be the reciprocal of standard deviation σ.

A Hence, we derived the normal probability density function (pdf) with mean 0 and
variance σ2:

p(x) =
1

σ
√
2π

e−1
2(

x
σ )

2

.

A When the variance is equal to 1, we obtain the standard normal pdf.
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