

Session 2

Limits and Derivatives

Christopher Ting

<http://cting.x10host.com/>

Hiroshima University

✉: cting@hiroshima-u.ac.jp

☎: +81 082-424-6451

🏢: A1棟 131-1

June 13, 2025 Version 1.0

Table of Contents

1 [Introduction](#)**2** [Limits](#)**3** [Limit to Infinity](#)**4** [Continuity](#)**5** [Derivatives](#)**6** [Chain Rule](#)**7** [Applications](#)**8** [Keywords](#)

Inspiring Quote

The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking.

— John von Neumann

Learning Outcomes

- ❑ Recall and review the concepts of limit, continuity, etc.
- ❑ Elaborate and grasp the notion of “does not exist”.
- ❑ Apply the arithmetic of limits and squeeze theorem.
- ❑ Illustrate the intermediate value theorem and how a root of an equation can be found through the method of bisection.
- ❑ Recall and revise derivatives and their notations.
- ❑ Analyze the concept of chain rule and its proof.
- ❑ Memorize and apply the standard forms of derivatives and anti-derivatives.

What is Limit?

Definition 2.1 (Informal Definition of Limit).

We write

$$\lim_{x \rightarrow a} f(x) = L$$

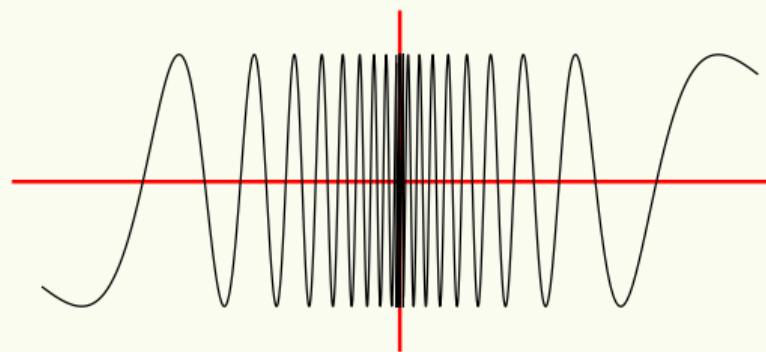
if the value of the function $f(x)$ is sure to be arbitrarily close to L whenever the value of x is close enough to a , without being exactly a .

- Let $f(x) = \frac{x-2}{x^2+x-6}$ and consider its limit as $x \rightarrow 2$.
- Plug in some numbers close to 2 and see what we find

x	1.9	1.99	1.999	...	2.001	2.01	2.1
$f(x)$	0.20408	0.20040	0.20004	...	0.19996	0.19960	0.19608

Does Not Exist (DNE)

- Consider the following function $f(x) = \sin(\pi/x)$. Find the limit as $x \rightarrow 0$ of $f(x)$.
- We should see something interesting happening close to $x = 0$ because $f(x)$ is undefined there.



☒ Since the function does not approach a single number as we bring x closer and closer to zero, the limit does not exist.

$$\lim_{x \rightarrow 0} \sin\left(\frac{\pi}{x}\right) = \text{DNE} \quad (\text{does not exist})$$

One-Sided Limits

Definition 2.2 (One-Sided Limits).

💡 We write

$$\lim_{x \rightarrow a^-} f(x) = K$$

This is the **left-hand limit** since x approaches a from the left.

💡 Similarly, we write

$$\lim_{x \rightarrow a^+} f(x) = L$$

This is the **right-hand limit** since x approaches a from the right.

Formal Definition of Limit

Definition 2.3.

We say that $\lim_{x \rightarrow a} f(x) = L$, if for every $\epsilon > 0$ there is a $\delta > 0$ such that whenever $0 < |x - a| < \delta$ then $|f(x) - L| < \epsilon$. Here L is the **limit point**.

Theorem 2.4.

$$\lim_{x \rightarrow a} f(x) = L \quad \text{if and only if} \quad \lim_{x \rightarrow a^-} f(x) = L \text{ and } \lim_{x \rightarrow a^+} f(x) = L$$

Example: Piecewise Function

▷ Consider a **piecewise function**:

$$f(x) = \begin{cases} x^2 + 5, & \text{if } x \leq -2; \\ 1 - 3x, & \text{if } x \geq -2. \end{cases}$$

▷ The left hand and right hand limits are, respectively,

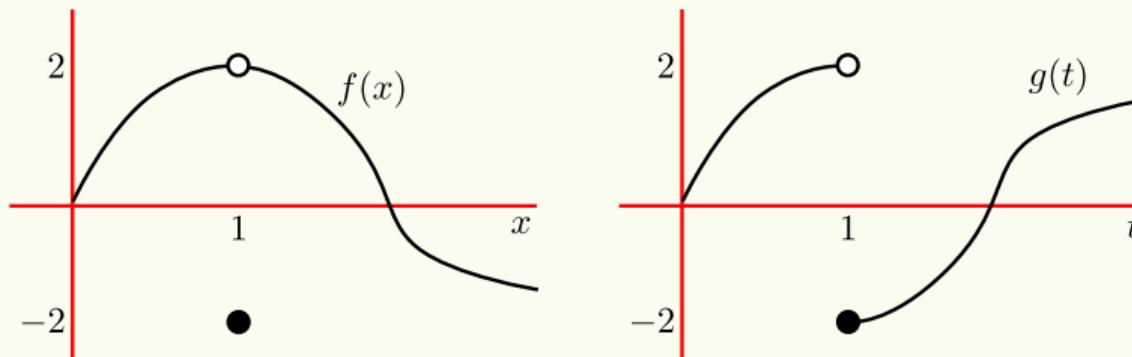
$$\lim_{x \rightarrow -2^-} f(x) = \lim_{x \rightarrow -2^-} x^2 + 5 = 9;$$

$$\lim_{x \rightarrow -2^+} f(x) = \lim_{x \rightarrow -2^+} 1 - 3x = 7.$$

▷ Therefore, $\lim_{x \rightarrow -2} f(x)$ does not exist.

Left and Right Limits

Consider the following two functions and compute their limits and one-sided limits as x approaches 1:



$$\lim_{x \rightarrow 1^-} f(x) = 2 \quad \text{and} \quad \lim_{x \rightarrow 1^+} f(x) = 2 \implies \lim_{x \rightarrow 1} f(x) = 2$$

$$\lim_{t \rightarrow 1^-} g(t) = 2 \quad \text{and} \quad \lim_{t \rightarrow 1^+} g(t) = -2 \implies \lim_{t \rightarrow 1} g(t) = \text{DNE}$$

Unbounded Limit

Definition 2.5 (Unbounded Limit).

❖ We write

$$\lim_{x \rightarrow a} f(x) = +\infty$$

when the value of the function $f(x)$ becomes arbitrarily large and positive as x gets closer and closer to a , without being exactly a .

❖ Similarly, we write

$$\lim_{x \rightarrow a} f(x) = -\infty$$

when the value of the function $f(x)$ becomes arbitrarily large and negative as x gets closer and closer to a , without being exactly a .

A Note on Unbounded Limit

⚠ Do not think of “ $+\infty$ ” and “ $-\infty$ ” as numbers.

⚠ The statement

$$\lim_{x \rightarrow a} f(x) = +\infty$$

does not say “the limit of $f(x)$ as x approaches a is positive infinity.” It says “the function $f(x)$ becomes arbitrarily large as x approaches a .”

⚠ The statement

$$\lim_{x \rightarrow a} f(x) = -\infty$$

says “the function $f(x)$ becomes arbitrarily small as x approaches a .”

Arithmetic of Limits

Theorem 2.6 (Arithmetic of Limits).

Let $a, c \in \mathbb{R}$, let $f(x)$ and $g(x)$ be defined for all x 's that lie in some interval about a (but f, g need not be defined exactly at a). Suppose

$$\lim_{x \rightarrow a} f(x) = F \quad \text{and} \quad \lim_{x \rightarrow a} g(x) = G.$$

exist with $F, G \in \mathbb{R}$. Then the following limits hold:

- ☒ $\lim_{x \rightarrow a} (f(x) \pm g(x)) = \lim_{x \rightarrow a} f(x) \pm \lim_{x \rightarrow a} g(x) = F \pm G$
- ☒ $\lim_{x \rightarrow a} cf(x) = c \lim_{x \rightarrow a} f(x) = cF$
- ☒ $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = \lim_{x \rightarrow a} f(x) \cdot \lim_{x \rightarrow a} g(x) = F \cdot G$
- ☒ If $G \neq 0$ then $\lim_{x \rightarrow a} \frac{f(x)}{g(x)} = \frac{\lim_{x \rightarrow a} f(x)}{\lim_{x \rightarrow a} g(x)} = \frac{F}{G}$.

Arithmetic of Limits for Powers and Roots

Theorem 2.7 (More Arithmetic of Limits—Powers and Roots).

❖ Let n be a positive integer, let $a \in \mathbb{R}$ and let f be a function so that

$$\lim_{x \rightarrow a} f(x) = F$$

for some real number F . Then the following holds

$$\lim_{x \rightarrow a} (f(x))^n = \left(\lim_{x \rightarrow a} f(x) \right)^n = F^n$$

so that the limit of a power is the power of the limit.

❖ Similarly, if

- n is an even number and $F > 0$, or
- n is an odd number and F is any real number

then $\lim_{x \rightarrow a} (f(x))^{1/n} = \left(\lim_{x \rightarrow a} f(x) \right)^{1/n} = F^{1/n}$

Squeeze Theorem

Theorem 2.8 (Squeeze or Sandwich Theorem).

Let I be an interval having the point a as a limit point. Let f , g , and h be functions defined on I , except possibly at a itself. Suppose that for every x in I not equal to a , we have

$$g(x) \leq f(x) \leq h(x),$$

and also suppose that

$$\lim_{x \rightarrow a} g(x) = \lim_{x \rightarrow a} h(x) = L.$$

Then

$$\lim_{x \rightarrow a} f(x) = L.$$

Proof of Theorem 2.8

When $x \rightarrow a$, and under the assumption that $g(x) \leq f(x)$, we have

$$\lim_{x \rightarrow a} g(x) \leq \liminf_{x \rightarrow a} f(x)$$

by the definition of greatest lower bound inf.

When $x \rightarrow a$, and under the assumption that $f(x) \leq h(x)$, we have

$$\limsup_{x \rightarrow a} f(x) \leq \lim_{x \rightarrow a} h(x)$$

by the definition of least upper bound sup.

Obviously, we have $\liminf_{x \rightarrow a} f(x) \leq \limsup_{x \rightarrow a} f(x)$.

Putting these inequalities together, we obtain

$$L = \lim_{x \rightarrow a} g(x) \leq \liminf_{x \rightarrow a} f(x) \leq \limsup_{x \rightarrow a} f(x) \leq \lim_{x \rightarrow a} h(x) = L.$$

Consequently all the inequalities are indeed equalities and the theorem immediately follows. □

Example of Applying Squeeze Theorem

☒ The limit $\lim_{x \rightarrow 0} x^2 \sin\left(\frac{1}{x}\right)$ cannot be ascertained through the limit law

$\lim_{x \rightarrow a} (f(x) \cdot g(x)) = \lim_{x \rightarrow a} f(x) \times \lim_{x \rightarrow a} g(x)$, because $\lim_{x \rightarrow 0} \sin\left(\frac{1}{x}\right)$ does not exist.

☒ However, by the definition of the sine function,

$$-1 \leq \sin\left(\frac{1}{x}\right) \leq 1.$$

Multiplying each term by a positive number x^2 , it follows that

$$-x^2 \leq x^2 \sin\left(\frac{1}{x}\right) \leq x^2.$$

☒ Since $\lim_{x \rightarrow 0} -x^2 = \lim_{x \rightarrow 0} x^2 = 0$, by the squeeze theorem, $\lim_{x \rightarrow 0} x^2 \sin\left(\frac{1}{x}\right)$ must also be 0.

Example 3.1

Example 3.1.

- Compute the following limit: $\lim_{x \rightarrow \infty} \frac{x^2 - 3x + 4}{3x^2 + 8x + 1}$.
- As x becomes very large, it is the x^2 term that will dominate in both the numerator and denominator, i.e., x^2 is much much larger than x or any constant.

$$\begin{aligned}
 \frac{x^2 - 3x + 4}{3x^2 + 8x + 1} &= \frac{x^2 \left(1 - \frac{3}{x} + \frac{4}{x^2}\right)}{x^2 \left(3 + \frac{8}{x} + \frac{1}{x^2}\right)} \\
 &= \frac{1 - \frac{3}{x} + \frac{4}{x^2}}{3 + \frac{8}{x} + \frac{1}{x^2}}
 \end{aligned}$$

remove the common factors

Example 3.1 (Cont'd)

Example 3.1 (Cont'd)

$$\begin{aligned}
 \lim_{x \rightarrow \infty} \frac{x^2 - 3x + 4}{3x^2 + 8x + 1} &= \lim_{x \rightarrow \infty} \frac{1 - \frac{3}{x} + \frac{4}{x^2}}{3 + \frac{8}{x} + \frac{1}{x^2}} \\
 &= \frac{\lim_{x \rightarrow \infty} \left(1 - \frac{3}{x} + \frac{4}{x^2}\right)}{\lim_{x \rightarrow \infty} \left(3 + \frac{8}{x} + \frac{1}{x^2}\right)} \quad \text{arithmetic of limits} \\
 &= \frac{\lim_{x \rightarrow \infty} 1 - \lim_{x \rightarrow \infty} \frac{3}{x} + \lim_{x \rightarrow \infty} \frac{4}{x^2}}{\lim_{x \rightarrow \infty} 3 + \lim_{x \rightarrow \infty} \frac{8}{x} + \lim_{x \rightarrow \infty} \frac{1}{x^2}} = \frac{1 + 0 + 0}{3 + 0 + 0} = \boxed{\frac{1}{3}}.
 \end{aligned}$$

Example 3.2

Example 3.2.

Find the limit as $x \rightarrow \infty$ of $\frac{\sqrt{4x^2 + 1}}{5x - 1}$

- ⇒ The denominator is dominated by $5x$.
- ⇒ The biggest contribution to the numerator comes from $4x^2$.
- ⇒ When we pull x^2 outside the square-root it becomes x , so the numerator is dominated by $x \cdot \sqrt{4} = 2x$

$$\sqrt{4x^2 + 1} = \sqrt{x^2(4 + 1/x^2)} = \sqrt{x^2}\sqrt{4 + 1/x^2} = x\sqrt{4 + 1/x^2}.$$

- ⇒ Thus the limit as $x \rightarrow \infty$ is

$$\lim_{x \rightarrow \infty} \frac{\sqrt{4x^2 + 1}}{5x - 1} = \lim_{x \rightarrow \infty} \frac{x\sqrt{4 + 1/x^2}}{x(5 - 1/x)} = \lim_{x \rightarrow \infty} \frac{\sqrt{4 + 1/x^2}}{5 - 1/x} = \boxed{\frac{2}{5}}.$$

Example 3.3

Example 3.3.

Find the limit as $x \rightarrow -\infty$ of $\frac{\sqrt{4x^2 + 1}}{5x - 1}$

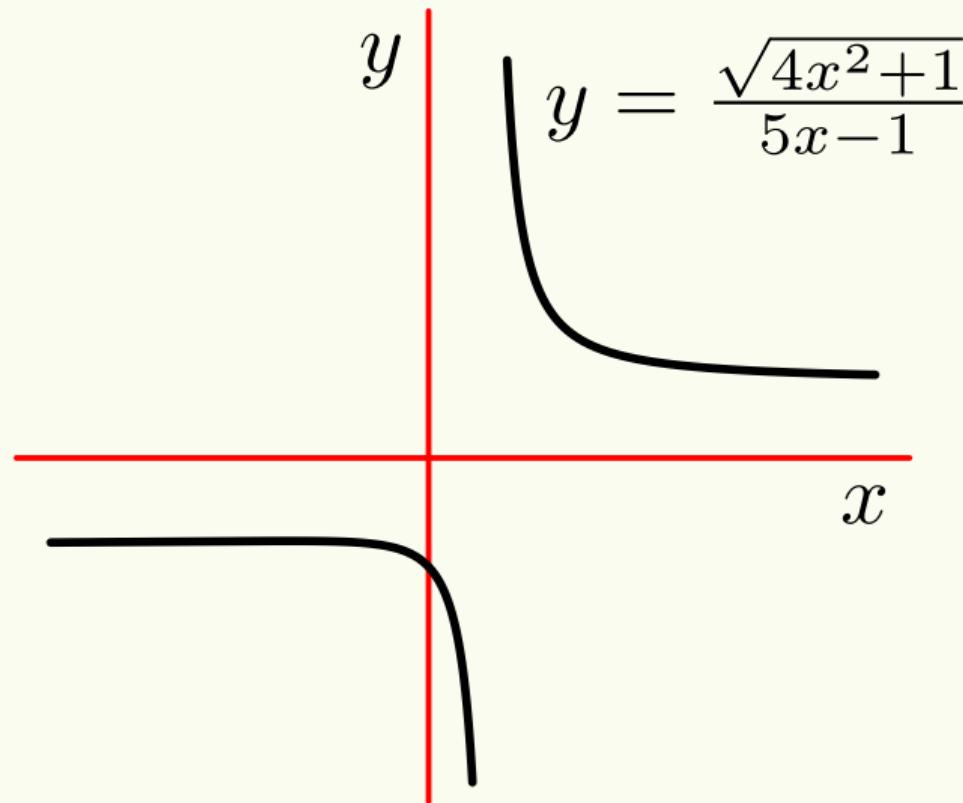
- ⇒ The biggest contribution to the numerator comes from $4x^2$.
- ⇒ When we pull x^2 outside a square-root it becomes $|x| = -x$, since we are taking the limit as $x \rightarrow -\infty$. Hence,

$$\begin{aligned}\sqrt{4x^2 + 1} &= \sqrt{x^2(4 + 1/x^2)} = \sqrt{x^2}\sqrt{4 + 1/x^2} \\ &= |x|\sqrt{4 + 1/x^2} = -x\sqrt{4 + 1/x^2}.\end{aligned}$$

- ⇒ Thus the limit as $x \rightarrow -\infty$ is

$$\lim_{x \rightarrow -\infty} \frac{\sqrt{4x^2 + 1}}{5x - 1} = \lim_{x \rightarrow -\infty} \frac{-x\sqrt{4 + 1/x^2}}{x(5 - 1/x)} = \lim_{x \rightarrow -\infty} \frac{-\sqrt{4 + 1/x^2}}{5 - 1/x} = \boxed{-\frac{2}{5}}.$$

Graph of Rational Function



Example 3.4

Example 3.4.

⇒ Compute the limit: $\lim_{x \rightarrow \infty} (x^{7/5} - x)$.

⇒ In this case we cannot use the arithmetic of limits to write this as

$$\lim_{x \rightarrow \infty} (x^{7/5} - x) = \left(\lim_{x \rightarrow \infty} x^{7/5} \right) - \left(\lim_{x \rightarrow \infty} x \right) \equiv \infty - \infty$$

because the limits do not exist.

- >We can only use the limit laws when the limits exist.
- When x is very large, $x^{7/5} = x \cdot x^{2/5}$ will dominate the x term.
- So factor out $x^{7/5}$ and rewrite it as $x^{7/5} - x = x^{7/5} \left(1 - \frac{1}{x^{2/5}}\right)$.

Example 3.4 (Cont'd)

Example 3.4 (Cont'd)

Consider what happens to each of the factors as $x \rightarrow \infty$.

- For large x , $x^{7/5} > x$ (this is actually true for any $x > 1$). In the limit as $x \rightarrow +\infty$, x becomes arbitrarily large and positive, and $x^{7/5}$ must be bigger still, so it follows that $\lim_{x \rightarrow \infty} x^{7/5} = +\infty$.
- On the other hand, $(1 - x^{-2/5})$ becomes closer and closer to 1. We can use the arithmetic of limits to write this as

$$\lim_{x \rightarrow \infty} (1 - x^{-2/5}) = \lim_{x \rightarrow \infty} 1 - \lim_{x \rightarrow \infty} x^{-2/5} = 1 - 0 = 1.$$

- So the product of these two factors will be come larger and larger (and positive) as x moves off to infinity. Hence we have $\lim_{x \rightarrow \infty} x^{7/5} (1 - 1/x^{2/5}) = +\infty$.

Arithmetic of Infinite Limits (Cont'd)

Theorem 3.5 (Cont'd)

- ⇒ $\lim_{x \rightarrow a} (f(x) \cdot g(x)) = +\infty.$
- ⇒ $\lim_{x \rightarrow a} f(x)h(x) = \begin{cases} +\infty & H > 0 \\ -\infty & H < 0 \\ \text{undetermined} & H = 0 \end{cases}$
- ⇒ $\lim_{x \rightarrow a} \frac{f(x)}{g(x)}$ undetermined
- ⇒ $\lim_{x \rightarrow a} \frac{f(x)}{h(x)} = \begin{cases} +\infty & H > 0 \\ -\infty & H < 0 \\ \text{undetermined} & H = 0 \end{cases}$
- ⇒ $\lim_{x \rightarrow a} \frac{h(x)}{f(x)} = 0$

What is continuity?

Definition 4.1 (continuity).

↳ A function $f(x)$ is **continuous** at a if

$$\lim_{x \rightarrow a} f(x) = f(a)$$

- ↳ If a function is not continuous at a then it is said to be **discontinuous** at a .
- ↳ When we write that f is continuous without specifying a point, then typically we mean that f is continuous at a for all $a \in \mathbb{R}$.
- ↳ When we write that $f(x)$ is continuous on the open interval (a, b) then the function is continuous at every point c satisfying $a < c < b$.

Arithmetic of Continuity

Theorem 4.3 (Arithmetic of Continuity).

Let $a, c \in \mathbb{R}$ and let $f(x)$ and $g(x)$ be functions that are continuous at a . Then the following functions are also continuous at $x = a$:

- ↳ $f(x) + g(x)$
- ↳ $f(x) - g(x)$
- ↳ $cf(x)$
- ↳ $f(x)g(x)$
- ↳ $\frac{f(x)}{g(x)}$ *provided* $g(a) \neq 0$.

Arithmetic of Continuity

Theorem 4.4 (Composition and Continuity).

If f is continuous at b and $\lim_{x \rightarrow a} g(x) = b$ then $\lim_{x \rightarrow a} f(g(x)) = f(b)$. That is,

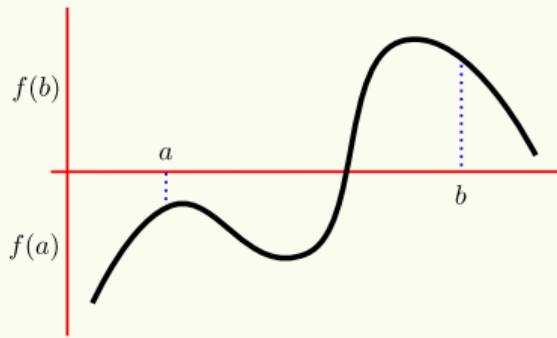
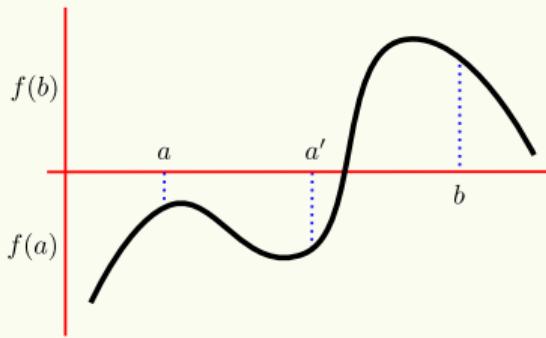
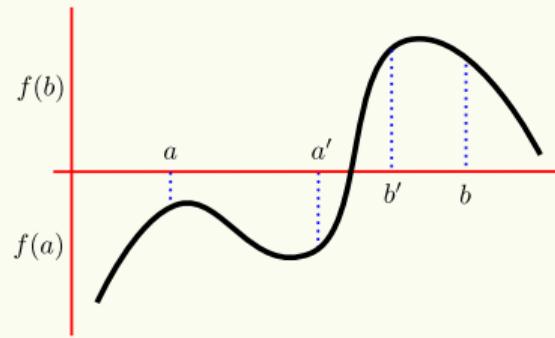
$$\lim_{x \rightarrow a} f(g(x)) = f\left(\lim_{x \rightarrow a} g(x)\right).$$

Hence if g is continuous at a and f is continuous at $g(a)$ then the composite function $(f \circ g)(x) = f(g(x))$ is continuous at a .

Theorem 4.5 (Intermediate Value Theorem (IVT)).

Let $a < b$ and let f be a function that is continuous at all points $a \leq x \leq b$. If Y is any number between $f(a)$ and $f(b)$ then there exists some number $c \in [a, b]$ so that $f(c) = Y$.

Application of IVT: Finding a Root



Example 4.6 (Illustration of Bisection Method).

Use the bisection method to find a zero of

$$f(x) = x - 1 + \sin(\pi x/2)$$

that lies between 0 and 1.

Example 4.6 Bisection Method

↳ We start with the two points $a = 0, b = 1$ and we find that

$$f(0) = -1$$

$$f(1) = 1.$$

↳ Test the point in the middle $x = \frac{0+1}{2} = 0.5$

$$f(0.5) = 0.2071067813 > 0.$$

↳ So our new interval will be $[0, 0.5]$ since the function is negative at $x = 0$ and positive at $x = 0.5$.

Example 4.6 Bisection Method (Cont'd)

- ↳ We now begin with points $a = 0, b = 0.5$ where $f(0) < 0$ and $f(0.5) > 0$.
- ↳ Test the point in the middle $x = \frac{0 + 0.5}{2} = 0.25$.

$$f(0.25) = -0.3673165675 < 0.$$

- ↳ So our new interval will be $[0.25, 0.5]$ since the function is negative at $x = 0.25$ and positive at $x = 0.5$.

Example 4.6 Bisection Method (Cont'd)

- ↳ We now begin with points $a = 0.25, b = 0.5$ where $f(0.25) < 0$ and $f(0.5) > 0$.
- ↳ Test the point in the middle $x = \frac{0.25 + 0.5}{2} = 0.375$.

$$f(0.375) = -0.0694297669 < 0.$$

- ↳ So our new interval will be $[0.375, 0.5]$ since the function is negative at $x = 0.375$ and positive at $x = 0.5$.

Example 4.6 Bisection Method (Cont'd)

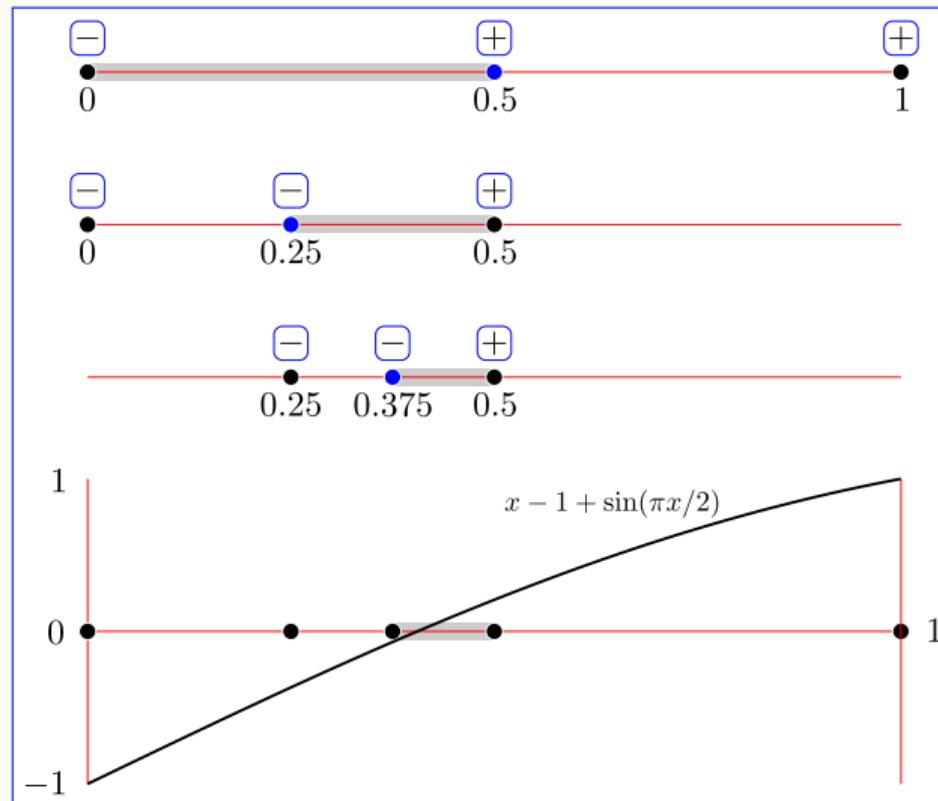
- ↳ So we now start with $a = 0.375, b = 0.5$ where $f(0.375) < 0$ and $f(0.5) > 0$
- ↳ Test the point in the middle $x = \frac{0.375 + 0.5}{2} = 0.4375$.

$$f(0.4375) = 0.0718932843 > 0.$$

↳ So our new interval will be $[0.375, 0.4375]$ since the function is negative at $x = 0.375$ and positive at $x = 0.4375$.

So without much work we know the location of a zero inside a range of length $0.0625 = 2^{-4}$. Each iteration will halve the length of the range and we keep going until we reach the precision we need, though it is much easier to program a computer to do it.

Bisection Method Summary Illustration



Definition of Derivative

Definition 5.1 (Derivative as a Function).

�� Let $f(x)$ be a function. The **derivative** of $f(x)$ with respect to x is

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x + h) - f(x)}{h}$$

provided the limit exists.

�� If the derivative $f'(x)$ exists for all $x \in (a, b)$ we say that f is **differentiable** on (a, b) .

�� We can simply write “ f is differentiable” to mean “ f is differentiable on an interval we are interested in” or “ f is differentiable everywhere”.

Example 5.2

Example 5.2 (The derivative of $f(x) = 1/x$).

Compute the limit as follows:

$$\begin{aligned}
 f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} && \text{(the definition)} \\
 &= \lim_{h \rightarrow 0} \frac{1}{h} \left[\frac{1}{x+h} - \frac{1}{x} \right] && \text{(substituted in the function)} \\
 &= \lim_{h \rightarrow 0} \frac{1}{h} \frac{x - (x+h)}{x(x+h)} && \text{(wrote over a common denominator)} \\
 &= \lim_{h \rightarrow 0} \frac{1}{h} \frac{-h}{x(x+h)} && \text{(started cleanup)} \\
 &= \lim_{h \rightarrow 0} \frac{-1}{x(x+h)} = -\frac{1}{x^2} && .
 \end{aligned}$$

Example 5.3

Example 5.3 (The derivative of $f(x) = \sqrt{x}$).

Compute the derivative, $f'(a)$, of the function $f(x) = \sqrt{x}$ at the point $x = a$ for any $a > 0$.

�� Start with the definition of derivative and go from there:

$$f'(a) = \lim_{x \rightarrow a} \frac{f(x) - f(a)}{x - a} = \lim_{x \rightarrow a} \frac{\sqrt{x} - \sqrt{a}}{x - a}.$$

�� Now, apply the trick of “multiplication by the **conjugate**”:

$$\begin{aligned} \frac{\sqrt{x} - \sqrt{a}}{x - a} &= \frac{\sqrt{x} - \sqrt{a}}{x - a} \times \frac{\sqrt{x} + \sqrt{a}}{\sqrt{x} + \sqrt{a}} \quad \left(\text{multiplication by 1} = \frac{\text{conjugate}}{\text{conjugate}} \right) \\ &= \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})} = \frac{1}{\sqrt{x} + \sqrt{a}}. \end{aligned}$$

Example 5.3 (Cont'd)

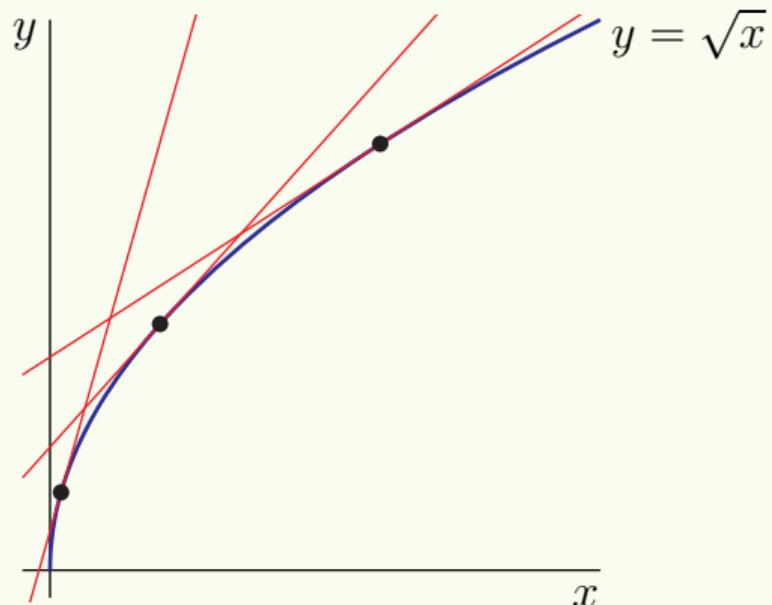
Example 5.3 (Cont'd)

💡 Once we know that $\frac{\sqrt{x} - \sqrt{a}}{x - a} = \frac{1}{\sqrt{x} + \sqrt{a}}$, we can take the limit:

$$\begin{aligned}f'(a) &= \lim_{x \rightarrow a} \frac{\sqrt{x} - \sqrt{a}}{x - a} \\&= \lim_{x \rightarrow a} \frac{1}{\sqrt{x} + \sqrt{a}} \\&= \frac{1}{2\sqrt{a}}.\end{aligned}$$

Example 5.3 (Cont'd)

- Three tangents at three points
- With parameter a , the slope of the **tangent** = $\frac{1}{2\sqrt{a}}$.



Notations

�� The following notations are all used for “the derivative of $f(x)$ with respect to x ”:

$$f'(x) \quad \frac{df}{dx} \quad \frac{d}{dx}f(x),$$

�� The following notations are all used for “the derivative of $f(x)$ at $x = a$ ”:

$$f'(a) \quad \frac{df}{dx}(a) \quad \frac{d}{dx}f(x) \Big|_{x=a}.$$

Product Rule $(f g)' = f' g + f g'$

💡 By definition, $(f g)' = \lim_{h \rightarrow 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$.

$$\begin{aligned}
 (f g)' &= \lim_{h \rightarrow 0} \frac{f(x+h)g(x+h) - f(x+h)g(x) + f(x+h)g(x) - f(x)g(x)}{h} \\
 &= \lim_{h \rightarrow 0} \frac{f(x+h)(g(x+h) - g(x))}{h} + \lim_{h \rightarrow 0} \frac{g(x)(f(x+h) - f(x))}{h} \\
 &= \lim_{h \rightarrow 0} f(x+h) \frac{g(x+h) - g(x)}{h} + \lim_{h \rightarrow 0} g(x) \frac{f(x+h) - f(x)}{h} \\
 &= \left(\lim_{h \rightarrow 0} f(x+h) \right) \left(\lim_{h \rightarrow 0} \frac{g(x+h) - g(x)}{h} \right) + \left(\lim_{h \rightarrow 0} g(x) \right) \left(\lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \right) \\
 &= f(x)g'(x) + g(x)f'(x) \\
 &= f'g + fg'.
 \end{aligned}$$

Quotient Rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$

✳️ By definition,

$$\begin{aligned}
 \left(\frac{f}{g}\right)' &= \lim_{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} = \lim_{h \rightarrow 0} \frac{1}{h} \frac{f(x+h)g(x) - f(x)g(x+h)}{g(x+h)g(x)} \\
 &= \lim_{h \rightarrow 0} \frac{1}{h} \frac{f(x+h)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x+h)}{g(x+h)g(x)} \\
 &= \lim_{h \rightarrow 0} \frac{1}{g(x+h)g(x)} \left(\frac{f(x+h)g(x) - f(x)g(x)}{h} + \frac{f(x)g(x) - f(x)g(x+h)}{h} \right) \\
 &= \lim_{h \rightarrow 0} \frac{1}{g(x+h)g(x)} \left(g(x) \frac{f(x+h) - f(x)}{h} - f(x) \frac{g(x+h) - g(x)}{h} \right)
 \end{aligned}$$

Quotient Rule $\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$ (Cont'd)

$$\begin{aligned}
 \left(\frac{f}{g}\right)' &= \frac{1}{\lim_{h \rightarrow 0} g(x+h) \lim_{h \rightarrow 0} g(x)} \left(\left(\lim_{h \rightarrow 0} g(x) \right) \left(\lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} \right) - \right. \\
 &\quad \left. \left(\lim_{h \rightarrow 0} f(x) \right) \left(\lim_{h \rightarrow 0} \frac{g(x+h) - g(x)}{h} \right) \right) \\
 &= \frac{1}{g(x)g(x)} (g(x)f'(x) - f(x)g'(x)) \\
 &= \frac{f'g - fg'}{g^2}
 \end{aligned}$$

Chain Rule

Theorem 6.1 (Chain Rule).

Suppose $f(x)$ and $g(x)$ are both differentiable functions. We define

$$F(x) := (f \circ g)(x) = f(g(x)).$$

Then the derivative of $F(x)$ is

$$F'(x) = f'(g(x)) \ g'(x).$$

⇒ Let $y := f(x)$ and $u := g(x)$. We can write the theorem as

$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}.$$

Proof of Chain Rule (1)

⇒ By definition, $u'(x) = \lim_{h \rightarrow 0} \frac{u(x+h) - u(x)}{h}$.

⇒ Let us define,

$$v(h) = \begin{cases} \frac{u(x+h) - u(x)}{h} - u'(x) & \text{if } h \neq 0 \\ 0 & \text{if } h = 0 \end{cases}$$

and notice that $\lim_{h \rightarrow 0} v(h) = 0 = v(0)$ and so $v(h)$ is continuous at $h = 0$.

⇒ Suppose $h \neq 0$, we rewrite $v(h)$ to get,

$$u(x+h) = u(x) + h(v(h) + u'(x)) \quad (1)$$

Proof of Chain Rule (2)

⇒ Since $f(x)$ is differentiable, we can do something similar.

$$w(k) = \begin{cases} \frac{f(z+k) - f(z)}{k} - f'(z) & \text{if } k \neq 0 \\ 0 & \text{if } k = 0 \end{cases}$$

⇒ By the same argument, $w(k)$ is continuous at $k = 0$.

$$f(z+k) = f(z) + k(w(k) + f'(z)). \quad (2)$$

Proof of Chain Rule (3)

⇒ Use the definition of the derivative and evaluate

$$\frac{d}{dx} [f[u(x)]] = \lim_{h \rightarrow 0} \frac{f[u(x+h)] - f[u(x)]}{h} \quad (3)$$

⇒ By (1), the numerator becomes,

$$f[u(x+h)] - f[u(x)] = f[u(x) + h(v(h) + u'(x))] - f[u(x)].$$

⇒ If we then define $z := u(x)$ and $k := h(v(h) + u'(x))$, we can use (2) to further write this as

$$\begin{aligned} f[u(x+h)] - f[u(x)] &= f[u(x) + h(v(h) + u'(x))] - f[u(x)] \\ &= f[u(x)] + h(v(h) + u'(x))(w(k) + f'[u(x)]) - f[u(x)] \\ &= h(v(h) + u'(x))(w(k) + f'[u(x)]). \end{aligned}$$

Proof of Chain Rule (4)

⇒ Plugging this into (3) gives,

$$\begin{aligned}\frac{d}{dx} [f[u(x)]] &= \lim_{h \rightarrow 0} \frac{h(v(h) + u'(x))(w(k) + f'[u(x)])}{h} \\ &= \lim_{h \rightarrow 0} (v(h) + u'(x))(w(k) + f'[u(x)]).\end{aligned}$$

⇒ Next, recall that $k = h(v(h) + u'(x))$, so $\lim_{h \rightarrow 0} k = 0$.

⇒ It follows that $\lim_{h \rightarrow 0} w(k) = w\left(\lim_{h \rightarrow 0} k\right) = w(0) = 0$.

⇒ Therefore,

$$\begin{aligned}\frac{d}{dx} [f[u(x)]] &= \lim_{h \rightarrow 0} (v(h) + u'(x))(w(k) + f'[u(x)]) = u'(x)f'[u(x)] \\ &= f'[u(x)] \frac{du}{dx} = f'(g(x))g'(x).\end{aligned}$$

Example of Chain Rule

Suppose $h(x) = \sqrt{4x + 1/x}$. It is a composite of $f(u) = \sqrt{u}$ and $g(x) = 4x + 1/x$.

■ Step 1: $\frac{d}{du} \sqrt{u} = \frac{1}{2} \frac{1}{\sqrt{u}}$.

■ Step 2: $\left(\frac{d}{du} \sqrt{u} \right) \Big|_{u=g(x)} = \frac{1}{2} \frac{1}{\sqrt{4x + 1/x}}$.

■ Step 3: $\frac{d}{dx} g(x) = 4 - \frac{1}{x^2}$.

■ Step 4: $\frac{d}{dx} h(x) = \frac{1}{2} \frac{1}{\sqrt{4x + 1/x}} \left(4 - \frac{1}{x^2} \right)$.

Standard Forms

Derivatives

$$\frac{d}{dx}((x+a)^n) = n(x+a)^{n-1}$$

$$\frac{d}{dx}(e^{x+a}) = e^{x+a}$$

$$\frac{d}{dx}(b^{x+a}) = \ln(b) \cdot b^{x+a}, \quad b > 0$$

$$\frac{d}{dx}(\ln(x+a)) = \frac{1}{x+a}$$

$$\frac{d}{dx}(\sin(x+a)) = \cos(x+a)$$

$$\frac{d}{dx}(\cos(x+a)) = -\sin(x+a)$$

Antiderivatives

$$\int (x+a)^n dx = \frac{1}{n+1} (x+a)^{n+1} + C, \quad n \neq 1$$

$$\int e^{x+a} dx = e^{x+a} + C$$

$$\int b^{x+a} dx = \frac{b^{x+a}}{\ln(b)} + C, \quad b > 0, b \neq 1$$

$$\int \frac{1}{x+a} dx = \ln|x+a| + C$$

$$\int \sin(x+a) dx = -\cos(x+a) + C$$

$$\int \cos(x+a) dx = \sin(x+a) + C$$

A Nice Example

- Find $\lim_{x \rightarrow 1} \frac{\log_4(x + 1) - 0.5}{x - 1}$.
- Consider the function $f(x) = \log_4(x + 1)$. Since $f(1) = 0.5$, the limit is a derivative when $x \rightarrow 1$. So by the definition of derivative,

$$\lim_{x \rightarrow 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \rightarrow 1} \frac{\log_4(x + 1) - 0.5}{x - 1} = f'(1).$$

- We cannot use $(\ln(x))' = 1/x$ because the base of $f(x)$ is 4 rather than e.
- By the law of the change of logarithmic base, we have

$$f(x) = \log_4(x + 1) = \frac{\ln(x + 1)}{\ln 4} \implies f'(x) = \frac{1}{(x + 1) \ln(4)} \implies f'(1) = \frac{1}{2 \ln(4)}.$$

Keywords

Antiderivatives, 52

Arithmetic of Limits, 13

Bisection Method, 31

Chain Rule, 46

Composition, 30

conjugate, 39

Continuity, 30

continuity, 27

continuous, 27, 28

continuous from the left, 28

continuous from the right, 28

derivative, 37

differentiable, 37

discontinuous, 27

does not exist, 6

Intermediate Value Theorem, 30

IVT, 30

left-hand limit, 7

Limit, 5

limit point, 8

One-Sided Limits, 7

piecewise function, 9

Product Rule, 43

Quotient Rule, 44

right-hand limit, 7

Squeeze Theorem, 15

tangent, 41

Unbounded Limit, 11